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Preface

This monograph represents what I believe to be a new approach to the
philoso[ffily of mathematics. Most of the literature in the philosophy
of mathcrim‘tics,.takéﬁ the following three questions as cencrai:
() How much of standard machematics is true? For example,
are conclusions arrived at using impredicative sct theory true?
(b) What entities do we have to postulate to account for the cruch
of (this part of) mathematics?
(c) What sort of account can we give of our knowledge of these
truths?

A fourth question is also sometimes discussed, though usually quite
cursorily:

(d) Whar sort of account is possible of how mathematics is applied

to the physical world?

Now, my view is that question (d) is the really fundamental one. And
by focussing on the question of application, [ was led to a surprising
result: that to explin even very complex applications of mathematics
to the physical world (for instance, the use of differential equations in
the axiomatization of physics) it is not necessary to assume that the
mathematics that is applied is true, it is necessary to assume little
more than that mathematics is consistent. This conclusion is not based
on any general instrumentalist stratagem : rather, it is based on a very
special feature of mathematics that other disciplines do not share.

The fact thac the application of mathematics doesn't require that
the mathemarics that is applied be true has important implications for
the philosophy of mathematics. For what good argument is. there for
regarding standard mathematics as a body of truths? The fact that-
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standard mathematics is logically derived from an apparenty con-
sistent body of axioms isn't cnough; the question is, why regard the
axioms as truths, rather than as fictions that for a variety of reasons
mathematicians have become interested in? The only non-question-
begging arguments [ have cver heard for the view that mathematics is
a body of truths all rest ultimately on the applicabilicy of mathematics
to the physical world; so if applicability to the physical world isn't a
good argument either, then there is no reason to tegard any part of
mathematics as true. This is not of course to say that {_;‘mrc is something
wrong with mathematics; it’s simply to say that ma’ihq{mtiqusn't the
sort of thing that can be appropriately evaluated in termis of truth and
falsehood. Questions (a)—(c) are thus trivially answered: no part of
mathemarics is true (but you can use impredicative reasoning and other
controversial reasoning all you like in mathematics as long as you're
pretty sure it's consistent); consequently no entties have to be pos-
tulated to account for mathematical truch, and the problem of account-
ing for the knowledge of mathematical truths vanishes. (Of course,
the problem of accounting for our knowledge of what mathematical
conclusions follow from what mathematical premises still remains.
But that is logical knowledge, not mathematical knowledge: it isn't
knowledge of any special realm of mathematical entities.)*

The hardest part of showing that the application of mathematics
doesn’t require that the mathematics thac is applied be true is to show
that mathematical endities are theoretically dispensable in a way that
theoretical entities in science are not: that is, that one can always re-
axiomatize scientific theories so that there is no reference to or quan-
fication over mathematical entities in the reaxiomatization (and one
can do this in such a way that the resulting axiomatization is faicly
simple and attractive). To show convincingly that such nominalistic
reaxiomatizations of serious physical theories are possible requires a

* In these first two paragraphs I have used the term ‘mathematics’ a ‘bit more
narrowly than in the text: in these paragraphs, only sentences containing terms
referring to mathematical entities or variables ranging over mathematical
cntitics count as part of mathematics. (Compare note 1 of the text.)
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rather detailed technical argument. In this monograph [ have in fact
given such an argument (in the case of one physical theory I judge to be
fairly typical). But I have tried to make the main ideas of my approach
accessible to those without the background or the patience to follow all
of the technical details.

The motivation for this project did not come solely from consider-
ations about the philosophy of mathematics or'about ontology: certain
ideas in the philosophy of science (such as the dc&i@bilit}f of what [ call
‘intrinsic explanations’ and the desirability of elimipating certain sorts
of ‘arbitrariness’ or ‘conventional choice’ from our gltimate formulation
of theories) also played a key role. These ideas from the philosophy of
science are touched on in Chaprer 5; they vield support, independent
of ontological considerations, for the account of the application of
mathematics being suggested here. I also discuss (mostly in Chaprer 9
but to some extent also in Chapter 4) some issues about logic and
about ontological commitment: in particular, the relativity of
ontological commitment to the underlying logic. i.c. the fact that one
can often reduce one’s ontological commitments by cxpanding one’s
logic. This is a fact about ontological commitment that has not been
sufficiently discussed by philosophers writing on ontological questions,
and onc of the issues I address myself to in the tinal chapter is under
what circumstances if any it is reasonable to cxpand one's logic in
order to reduce one’s ontology.

I would like to thank the University of Southern California, the
National Science Foundation and the Guggenheim Foundaton for
their gencrous support that provided me with the time needed for
rescarch and writing of this project. At a less material level, [ would
like to thank John Burgess and especially Scott Weinstein for helping
me to get straight the relation between the consistency of mathemat-
ics and its conservativeness (cf. the Appendix to Chapter 1); and
to Burgess, Tony Martin, and Yiannis Moschovakis for helpfully
answering various questions that arose when I attempted to prove a
false claim about the system N, that is discussed in Chapter 9. Several
readers of an earlier draft made helpful comments that enabled me to
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clarify and improve my arguement: among them I would like especially
to mention Solomon Feferman, Michael Friedman, David Hills, Janet
Levin, Colin McGinn, and Charles Parsons. Finally, I would like to
express a general indebtedness to Hilary Putnam: in philosophy of
mathematics as in much else, his work has deeply influenced the way
I think about things, even where (as here) the conclusions we have
reached are very different.
Here is a chapter-by-chaprer description of what follows:

Prelxmr}ary Remarks. {a) States the doctrine to be advocated (and to be
called n.omlnahsm) namely the vigw that there are no mathematical
entities; (b‘\ sketches the most serious objection that has been made to
this doctrine: roughly, that mathematical entities are indispensable to
practical affairs and to science; {c) describes the strategy most nominalists
have adopted for trving to ger around this objection; and (d) describes
an alternative strategy for overcoming the objection, which s the strategy
to be employed in this book.

t Why the Utility of Mathematical Entities is Unlike the Utility of
Theoretical Entities. In this chapter [ argue that it is legitimate to use
mathematics to draw nominalistic conclusions (i.e. conclusions
statable without reference to mathematical entities) from nominalistic
premises, without assuming that the mathematics used in this way is
true, but assuming little more than that it is consistent. More preciscly,
what one assumes about mathematics (and che relationship of this
assumption to the assumption that mathematics is consistent is dis~
cussed in the Appendix to the chapter) is that mathematics is conservative:
any inference from nominalistic premises to a nominalistic conclusion
that can be made with the help of mathemarics could be made (usually
more long-windedly) without it. This is a fundamental difference
between the use of mathematical entities and the use of the theoretical
entities of science: no such conservativeness property holds for the
latter. The utility of theoretical entities in science is due solely to their
theoretical indispensability: without theoretical entities, no (sufficiently
attractive) theory is possible. At first blush, it appears that mathematical
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entities are theoretically indispensable too, for they seem to be needed
in axiomatizing science; it appears, then, that the conservativeness of
mathematics accounts for only part of its utlity. In later chapters
however I argue that mathematical entities are not theoretically in-
dispensable, and that the entire utility of mathematics can be accounted
for by its conservativeness, without assuming its truth,

First Hllustration of Why Mathematical Entities are Useful: Arithmeric
This chapter and the next provide elementary illustrations of the kind
of apphcanon of mathematics that can be accounted for by the
con§ervanvcncss of mathematics alone, without invoking the as-
sumption shat the mathematics bemg applied is true. This chaprer
concerns the application of the arithmetic of natural numbers.

3 Second Illustration of Why Mathematical Entities are Useful: Geomertry
and Distance. Here I show that the use of real numbers in gcometry
can be accounted for by the conservativeness of mathematics, without
assuming the truth of the theory of real numbers. This illustration of
the ideas of Chapter 1 will play a major role in cnsuing chapters. To
give a bit more detail: [ discuss Hilbert’s axiomatization of Euclidean
geometry, which, since it docsn’t involve real numbers, shows that
real numbers are theoretically dispensable in geometry: than [ discuss
two theorems that Hilbert proved about his axiomatization of geomerry,
namely his representation and uniqueness theorems, and show how
the representation theorem exphins the utility of real numbers in
geometric reasoning (without requiring that the theory of real numbers
be truc) while the uniqueness theorem establishes that the axiomatiz-
ation without numbers has cerrain quite desirable properties.

4 Nominalism and the Structure of Physical Space. Here it is argued that
the Hilberr theory of the previous chapter not only dispenses with real
numbers, but is {or can be made with a little rewriting) a genuinely
nominalistic theory of the structure of physical space. Arguing this
involves a brief discussion of some questions in the philosophy of
space and time, and an issuc in the philosophy of logic that arises
again in Chapter 9.
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s My Strategy for Nominalizing Physics, and its Advantages. Here | stratcgy of nominalization that is used in more complicated contexts

suggest that the Hilbert theory of geometry, and its representation and later on in the chaprer.

uniqueness theorems, providc a gencral model of how physical 9 Logic and Ontology. There are two respects in which the treatment of
theories are to be nominalized. Several features of Hilbert's version of physics in the foregoing chapters goes bevond first-order logic, and
geometry are cited; it is argued that these features are highly advan- this final chapter discusses what morals are to be drawn trom this. It is
i tageous ones, and a decision is made to require of an adequate nominaliz- : argued first that this extra logic does not violate nominalism; second,
% ation of physics that it have analogous advantages. [t is also pointed out that usc of this extra logic is preferable to usc of set theoretic surrogates
that the other nominalistic approaches which were contrasted to my for the logic (which would violate nominalism); third, thac usc of this
approach in the Preliminary Remarks do not lead to physical theories extra logic is probably dispcnsabjy anyway. The first two of these
with these advantageous features. : ‘ . . points involve issues about ontological commitment that are of
6 A Nominalistic Treatment of Newtofian” Space-time. This chapter interest independently of the theory biing, presented in this monogmph

extends the Hilbert treatment of space to space~time, emphasizing the :
advantages of the resulting theory over more usual approaches to
. space-time. (The key advantages of my approach, aside from its being
! nominalistic, are that it is more thoroughly ‘intrinsic’ and (closely
related) that it avoids use of a certain kind of ‘arbitrary choice’ of scale,
rest frame, coordinate system, ctc.) This is the first of the chapeers that
have a fairly technical subject marter, but it is written in an informal
enough way so that most readers should be able to get the main idea

of the approach I am following and its advantages.

7 A Nominalistic Treatment of Quantities, and a Preview of a Nominalistic
Treatment of the Laws involving them. Here I discuss very bricfly how
quantities like tcmp(.raturc are to be dealt with nominalistically. [ also
outline the strategy that is to be used in the next chaprer for dealing
nominalistically with laws involving these quantities, such as differential
equations. This chapter, like the last, deals with rechnical material, but
is informal enough so that most readers should get the gencral idea.

8 Newtonian Gravitational Theory Nominalized. This chapter is quite
technical: it is a detailed sketch of how one particular theory is to be
formulated nominalistically, and how the adequacy of this formulation
is to be proved. I suspect that many readers will not be interested in
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Preliminary Remarks

Nominalism is the doctrine that there are no abstract entities. The
derm ‘abseract entity’ may not be entirely clear, bue one thing that does
seem clear is that such alleged cncitics as numbers, functions, and segs
are abstract—that is, they would be abserace it they existed. In defend-
ing nominalism therefore [ am denving that numbers, tunctions, sets,
or any similar cntities exist.

Since I deny that numbers, functions, sets, ctc. exist. [ deny thae it is
legitimate to use terms that purport o reter to such entities. or variables
that purport to range over such cntities, in our ultimate account of
what the world is really like,

This appears to raise a problem: for our ulimate account of what
the world is really like musc surely include a physical theory; and in
developimg physical theorics one needs to use mathematies: and
mathematics is full of such references to and quantifications over
numbers, functions, scts. and the like. It would appear then thac
nominalism is nor a position that can reasonably be maintained.

There are a number of prima facie possible ways to try to resolve this
problem. The way that has proved most popular among nominal-
istically inclined philosophers is to try to reinterpret mathemarics—
reinterpret it so that its terms and quantifiers don’t make reference to
abstract entitics (numbers, functions, ctc.) but only to entities of other
sorts, say physical objects, or linguistic expressions, or mental
constructions.

My approach is different: [ do not propose to reinterpret any part
of classical mathemarics; instead, I propose to show that the mathe-
matics needed for application to the physical world does not include

I



2 SCIENCE WITHOUT NUMBERS

anything which even prima facie contains references to (or quantifications
over) abstract entities like numbers, functions, or sets. Towards that part
of mathematics which does contain references to (or quantifications
over) abstract entities—and this includes virtually all of conventional
mathematics—I adopt a fictionalist attitude: that is, I see no reason to
regard this part of mathematics as true.!

Most recent philosophers have been hostile to fictionalist interpret-
ations of mathematics, and for good reason. If one just advocates
fictionalism about a portion of mathematics, without showing how
that part of iimthcmatics i§" dispensable in applications, then one is
engaging in intellzctual doublethink: one is merely taking back in one’s
philosophical moments what one asserts in doing science, without pro-
posing an alternative formulation of sciencc that accords with one’s
philosophy. This (Quinean) objection to fictionalism abour mathe-
matics can only be undercut by showing that therc is an alternadive
formulation of science that does not require the usc of any part of
mathematics that refers to or quantifics over abstract entitics. I believe
that such a formulation is possible; consequently, without intellectual
doublethink, I can deny that there are abstrace entities.

The task of showing that onc can reformulate all of science so that
it does not refer to or quantify over abstract entitis is obviously a very
large one; my aim in this monograph is only to illustrate what 1
believe to be a new strategy toward realizing this goal, and to make both
the goal and the strategy look attractive and promising. My attempt
to make the strategy look promising ultimately takes the following
form: I show, in Chapter 8, how in the context of certain physical
theories (field theories in flat space-time?) one can develop an analogue
of the calculus of several real variables that does not quantify over real
numbers or functions or any such thing. Although I do not develop
this analogue of calculus completely (e.g. I do not discuss integration),
I do sketch enough of it to show how a nominalistic version of the
Newtonian theory of gravitation could be given. This nominalistic
version of gravitational theory has all the nominalistically-statable
consequences of the usual platonistic (i.e. non-nominalistical) versions

Leeae ."’. b pepesiseeenes. |
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PRELIMINARY REMARKS 3

of the theory. Moreover, [ believe that the nominalistic reformulation
is mathematically attractive, and thac there are considerations other
than ontological ones that favour it over the usual platonistic formu-
lations.

I must admit that the formulation of gravitational theory which [
arrive at will not satisty every nominalist: [ use several devices which
some nominalists would question. In particular, nominalists with any
finitist or operationalist tendencies will not like the way I formulate
physical theories, for my formulations will be no more finitist or
operationalisg than the usuat platonistic formulations of these theories
are. To illusrrato: the - distinction [ have in mind between nominalist
concerns on the one hand and finitist or operationalist concerns on
the other, consider an cxample. Somcone might object to asserting
that between any two points of a lighe ray (or an electron, if electrons
have non-zero diameter) there is a third point. on the ground that this
commits one to infinitely many poines on the light ray (or the electron)
or on the ground that it is not in any very direct sense checkable. But
these grounds for objccting to the asscrrion are not nominalistic grounds
as [ am using the term ‘nominalist’, tor they arise not trom the nature
of the postulated entities (viz. the parts of the light ray or of the clectron)
but from the seructural assumptions involving them (viz. that there are
infinitely many of them in a finitc stretch). I am not very impressed
with finitist or operationalist worries, and consequently [ make no

pologics for making some fairly strong structural assumptions about
he basic entities of gravitational physics in whac follows. It is not that

have no sympathy whatever for the program of reducing the struc-
ural assumptions made abouct the entities postulated in physical
heories—if this can be done, it is interesting. Bur as far as [ aware,
it has not been successfully done even in platonistic formulations of
physics: that is, no platonistic physics is available which uses a mathe-
matical system less rich than the real numbers to represent the positions
of the parts of a light ray or of an elcctron. Consequently, although I
will make it a point not to make any structural assumptions about
entities beyond the structural assumptions made in the usual platonistic
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theories about these entities, [ will also feel no compulsion to reduce
my structural assumptions below the platonistic level.* The reduction
of structural assumptions is simply not my concern.

Although I feel no apologies are in order for my use of structural
assumptions that would offend the finitist or operationalist, there is
another device I have used which I do feel slightly apologetic about.
But I try to argue in the final chapter that it is less objectionable than
it might at first seem, and that it is probably eliminable anyway.

I would like to make clear at the outset that nothing in this mono-
graph purports to be a positive argument foi- nominalism:" My goal
rather is to try to counter the most compelling rguinents that have
been offered against the nominalist position. It seems to me that the
only non-question-begging arguments against the sort of nominalism
sketched here (that is, the only non-question-begging arguments for
the view that mathematics consists of truths) are all based on the
applicability of mathematics to the physical world. Notice that I do
not say that the only way to arguc that a given mathematical axiom is
true is on the basis of ifs application to the physical world: that would
be incorrect. For instance, if one grants that the clementary axioms of
set theory are true, one can with at least some plausibility argue for
the truth of the axiom of inaccessible cardinals on the grounds that
this axiom accords with the general conception of sets that underlies
the more elemencary axioms. More generally, if we assume that the
concept of truth has non-trivial application in at least one part of pure
mathematics (or to be more precise, if we assume that there is at least
one body of pure mathematical assertions that includes existential
claims and that is true), then we are assuming that there are mathemat-
ical entities. From this we can conclude that there must be some body
of facts about these endries, and that not all facts about these entities
are likely to be relevant to known applications to the physical world;
it is then plausible to argue that considerations other than application
to the physical world, for example, considerations of simplicity and
coherence within mathematics, are grounds for accepting some pro-
posed mathematical axioms as true and rejecting others as false. This is
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PRELIMINARY REMARKS 5

all fine; but it is of relevance only after one grants the assumption that
for some part of mathematics the concept of truth has non-trivial
application, and this is an assumption that the nominalist will not grant.

There can be no doubt that the axioms of, say, real numbers are im-

portant, or that they are non-arbitrary; and an explanation of their non-
arbitrariness, based on their applicability to the physical world but
compatible with nominalism, will be given in Chapters 1-3. The
present point is simply that from the importance and non-arbitrariness
of these axioms, it doesn't obviously follow that these axioms are true,
i.e. it doesn’t obviously follow that there ai}é mathemarical entities
that these axioms correctly describe. The existence .of such entities
may in the end be a reasonable conclusion to draw from the importance
and non-arbitrariness of the axioms, but this needs an argument.
When the debate is pushed to this level, I believe it becomes clear that
there is one and only onc serious argument for the existence of
mathematical entitics, and that is the Quincan argument that we need
to postulate such entitics in order to carry out ordinary inferences about
the physical world and in order to do science.* Consequently it seems
to me that if I can undercut this argument for the existence of math-
ematical entities, then the position that there are such entities will
look like unjustifiable dogma.

The fact that what [ am trying to do is not to provide a positive
argument for nominalism but to undercut the only available argument
for platonism must be borne in mind in considering an important
methodological issue. Although in this monograph I will be espousing
nominalism, [ am going to be using platonistic methods of argument: [
will for instance be proving platonistically, not nominalistically, that a
certain nominalistic theory of gravitation has all of the nominalistically-
statable consequences that the usual platonistic formulation of the
Newtonian theory of gravitation has. It might be thought that there
was something wrong about using platonistic methods of proof in an
argument for nominalism. But there is really lictle difficulty here: if Tam
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successful in proving platonistically that abstract entities are not needed
for ordinary infcrences about the physical world or for science, then
anyone who wants to argue for platonism will be unable to rely on the
Quinean argument that the existence of abstract entities is an indis-
pensable assumption. The monograph shows that any such argument
would be inconsistent with the platonistic position that is being argued
for. The would-be placonist, then, will be forced into either acceptng

. abstract objects without argument or elsc relying on other arguments

for platonism, arguments which in my opinion are quite unpersuasive.

The upshot then (if [ am right in my negative appraisal of alternative

arguments for platonism) is that platonism is left in an unstable pos-
ition: it entails its own unjustifiabilicy.’

It may be of course that my negative appraisal of alternative ar-
guments for platonism is wrong. Interestingly cnough, the platonist
who bases his case for platonism on some such alternative argument
may even find what I have to say welcome; for independently of
nominalistic considerations, [ believe that what I do here gives an
attractive account of how mathematics is applied to the physical
world. This is I think in sharp contrast to many other nominalistic
doctrines, e.g. doctrines which reinterpret mathematical statements as
statements about linguistic entities or about mental constructions.
Such nominalistic doctrines do nothing toward illuminating the way
in which mathematics is applied to the physical world. (I will return
to this point in Chapter 5.)

i
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Why the Utility pf Mathematical Entities is
" Unlike the Utility of Theoretical Entities

No one can sensibly den that the invocation of mathemacical entities
in some contexts is usctul. The question arises as to whether the utdlicy
of mathematical existence-assertions gives us any grounds for belicving
that such existence-assertions are true. [ claim that in answering this
question one has to distinguish two different ways in which mathemat-
ical existence-assertions might be usetul; I grane char if such assertions
arc uscful in a certain respect, then that would indeed be evidence that
they are true; but the most obvious respect in which mathematical
existence assertions are usetul is, [ claim, quitc a different one, and [ will
argue that the utility of such assertions in this respect gives no grounds
whatever for belicving the assertions to be true.

To be more explicit, [ will argue that the uality of mathematical
entities is structurally disanalogous to the utility of theoretical entities
in physics. The utility of theoretical encities lies in two facts:

(a) they play a role in powerful theories from which we can deduce
a wide range of phenomena; and

7



8 SCIENCE WITHOUT NUMBERS

(b) no alternative theories are known or seem ac all likely which
explain these phenomena without similar entities.

[The unsympathetic reader may dispute (b): if any body of sentences
counts as a ‘theory’ and any deduction from such a ‘theory’ counts as
an explanation, then there clearly are alternatives to the usual theories
of subatomic particles: e.g., take as your ‘theory’ the set T* all of the
consequences of T that don’t contain reference to subatomic particles
(where T is one of the usual theories thar does contain reference to
subatomnic particles); or if you wanta recursively axiomatized ‘theory’,
let T** be the Craigian reaxiomatization of the theory T* just
described. Since I don't know any formal conditions to impose which
would rule out such bizarre trickery, let me simply say that by ‘theory’
[ mean reasonably attractive theory; ‘theories’ like T* and T** are
obviously uninteresting, since they do nothing whatever toward
explaining the phenomena in question in terms of a small number of
basic principles.] The upshot of (a) and (b) is that subatomic particles
are theoretically indispensable; and I belicve that that is as good an
argument for their cxistence as we need. Now, later on in the mono-
graph I will argue that mathematical entitics are not theoretically
indispensable: although they do play a role in the powerful theories
of modemn physics, we can give artractive reformulations of such
theories in which mathematical entities play no role. If chis is right,
then we can safely adhere to a fictionalist view of mathematics, for
adhering to such a view will not involve depriving oursclves of 2
theory that explains physical phenomena and which we can regard as
literally true.

But the task of arguing for the theoretical dispensability of math-
ematical entities is a matter for later. What [ want to do now is to
give an account, consistent with the theoretical dispensability of
mathematical entities, of why it is useful to make mathematical
existence-assertions in certain contexts.

The explanation of why mathematical entities are useful involves a
feature of mathemadics that is not shared by physical theories that
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MATHEMATICAL AND THEORETICAL ENTITIES 9

postulate unobservables. To put it a bit vaguely for the moment: if
you take any body of nominalistically stated assertions N, and supple-
ment it with a mathemadcal theory S, you don’t get any
nominalistically-statable conclusions that you wouldn’t get from N
alone. The analog for theories postulating subatomic particles 1s of
course not true: if T is a theory that involves subatomic particles and
is ac all inceresting, chen there are going to be lots of cases of bodies
P of wholly macroscopic assertions which in conjunction with T
yield macroscopic conclusions that they don’t yield in absence of T;
if this were not so, theories about sysatomic particles could never be
tesced. . ) '

I'll state these claims more precisely in a moment, but first I should
say that the claim about mathematics would be almost torally mivial
if mathematics consisted only of theories like number theory or pure
set theory, i.c. ser theory in which no allowance is made for sets with
members that are not themselves sets. Bue these theories are by them-
selves of no interest from the point of view of applied mathematics,
for there is no way to apply them to the physical world. That is, there
is no way in which they are even prima facie helpful in enabling us to
deduce nominalistically-statable consequences from nominalistically-
statable premiscs. In order to be able to apply any postulated abstract
entities to the physical world, we necd impure abstract entities, c.g.
functions that map physical objects into pure abstract entities. Such im-
pure abstract entitics serve as a bridge between the pure abstract entities
and the physical objects; without the bridge, the pure objects would be
idle. Consequently, if we regard functions as sets of a certain sort, then
the mathematical theories we should be considering must include at
least 2 minimal amount of set theory with urclements (a urelement
being a non-set which can be the member of sets). In fact, in order to be
sufficiently powerful for most purposes, the mathematical theory
must differ from pure set theory not only in allowing for the possibilicy
of urclements, it must also allow for non-mathematical vocabulary to

.~ __appear in the comprehension axioms (i.c. in the instances of the axiom
g schema of separation or of replacement). So the ‘bridge laws’ must
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include laws that involve the mathematical vocabulary and the physical
vocabulary together.

Something rather analogous is true of the theory of subatomic
particles. One can artificially formulate such a theory so that none of
the non-logical® vocabulary that is applied to observable physical
objects is applied to the subatomic particles; in general it seems to me
pointless to formulate physical theorics in this way, but to press the
analogy with the mathematical case as far as it will go, let us suppos:
it dene. If it is done, and if we suppose that T is a physical theory
stated entbrely in this vocabulary, then of course, it will be the case that
if we add T to a bunch of macroscopic assertions P, we will be able to
derive no results about observables that weren't derivable already. But
that is for a wholly uninteresting reason: it is because the theory T by
itsclfis not even prima facie helpful in deducing claims about observables
from other claims about observables. In order to make it even prima
facie helpful, we have to add ‘bridge laws’, laws which connect up the
entities and/or the vocabulary of the (artificially formulated) physical
theory with observables and the properties by which we describe them.
So far, then, like the mathematical case. But there is a fundamental
difference between the two cases, and that difference lies in the nature of the
bridge laws. In the case of subatomic particles, the theory T, interpreted
now so as to include the bridge laws (and perhaps also some assump-
tions about initial conditions), can be applied to bodies of premises
abour obscrvables in such a way as to yield genuinely new claims
about obscrvables, claims that would not be derivable without T.
But in the mathematical case the situation is very different: here, if we
take a mathematical theory that includes bridge laws (i.e. includes
assertions of the existence of functions from physical objects into ‘pure’
abstract objects, including perhaps assertions obtained via a compre-
hension principle that uses mathematical and physical vocabulary in
the same breath), then that mathematics is applicable to the world,
i.e. it is useful in enabling us to draw nominalistically-statable con-
clusions from nominalistically-statable premises; bur here, unlike in the
case of physics, the conclusions we arrive at by these means are not genuinely
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new, they are already derivable in a more long-winded fashion from the
premises, withont recourse to the mathematical entities.

This claim, unlike the one I will make later about the theoretical
dispensability of mathematical entities, is pretty much of an incontro-
vertible fact, but one very much worth emphasizing. So first let me
state the point more precisely than I have done.

A first stab at purting che point preciscly would be to say that for
any mathematical theory S and any body of nominalistic asscrtions
N, N.+ S is 2 conservative extension of N. However, this formulation
isn't quite right, and it is worth taking the trouble to put the point’
accurately. The problem with this formulation is that since N is a
nominalistic theory, it may say things that rule out the existence of
abstract entities, and so N +S may well be inconsistent. But it is
clear how to deal with this: first, introduce a 1-place predicate ‘M(x)",
meaning intuitively ‘x is a mathematical cntity’; sccond, for any
nominalistically-stated assertion A, let A* be the assertion that results
by restricting each quantifier of A with the formula ‘not M(x;) (for
the appropriate variable ‘x;);? and third, for any nominalistically-
stated body of assertions N, let N* consist of all assertions A* for A
in N. N* is then an ‘agnostic’ version of N: for instance, if N says
that all objects obey Newton's laws, then N* says thac all non-
mathematical objects obey Newton's laws, but it allows for the possibility
that chere are mathematical objects that don’t. {Actually N* is in one
respect foo agnostic: in ordinary logic we assume for convenicnce that
there is at least one thing in the universe, and in the context of a theory
like N this means that there is at least one non-mathematical thing.
So it is really N* + ‘3x — M(x)’ that gives the agnostic content of N).
Whether a similar point needs to be made for our mathematical theory
S depends on what we take S to be. If S is simply set theory with urele-
ments, no restriction on the variables is needed, since the theory
already purports to be about non-sets as well as sets: we merely need to
connect up the notion of set that occurs in it with our predicate ‘M,
by adding the axiom * Vx(Set (x) = M(x))’. If in addition the mathemat-

~ical theory includes portions like number theory, considered as
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independent disciplines unreduced to set theory, then we must restrict
all variables in them by a new predicate ‘Number’, and add the
axioms ‘ ¥x(Number (x) = M(x))’ and ‘Ix(Number (x))’. Presumably,
however, everyone agrees that mathematical theories really ought to
be written in this way (that is, presumably no one believes that all
entities are mathematical), so I will not introduce a special notation for
the modified version of S, I'll assume that S is written in this form from
the start. (The wnalogous assumption for N would be inappropriate:
the nominalist wants to assert not N*, but the stronger claim N.)

Having dealt with these tedious points, I can now state accurately
the claim made at tie end of the next to last paragraph.

Principle C (for ‘conservative’): Let A be any nominalistically statable®
assertion, and N any body of such assertions; and let § be any
mathematical theory. Then A* isn't a consequence of N* +§ +
‘Ix — M(x)’ unless A is a consequence of N.

Why should we belicve this principle? Well, it follows® from a

slightly stronger principle that is perhaps a bit more obvious:
Principle C': Let A be any nominalistically-statable assertion, and
N any body of such assertions. Then A* isn’t a consequence of
N* + S unless it is a conscquence of N* alone.

This in turn is equivalent (assuming the underlying logic to be compact)
to something still more obvious-sounding:

Principle C” Let A be any nominalistically-statable assertion. Then
A* isn’t a consequence of S unless it is logically truc.

Now I take it to be perfectly obvious that our mathematical theories
do satisfy Principle C”. After all, these theories are commonly regarded
as being ‘true in all possible worlds’ and as ‘a priori true’; and though
these characterizations of mathematics may be contested, it is hard to
see how any knowledgeable person could regard our mathematical
theories in these ways if those theories implied results about con- -
crete entities alone that were not logically true. The same argument can
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be used to directly motivate Principle C', thereby obviating the need
of the compactness assumption: if mathematics together with a body
N* of nominalistic assertions implied an asscrtion A* which wasn't a
logical consequence of N* alone, then the truth of the mathemarical
theory would hinge on the logically consistent body of assertions
N* + — A* not being true. But it would scem that it must be possible,
and/or not a priori false, that such a consistent body of assertions
about concrete objects alone is truc; if so, then the failure of Principle
C would show that mathematics couldn’t be ‘true in all possible
worlds' andfor ‘a priori true’. The fact that so many people think it
does have these charactecistics seems like some evidence that it does
indeed satisfy Principle C’ and therefore Principle C.

This argument isn’t conclusive: standard mathematics might turn out
not to be conservative {i.e. not to satisty Principle C), for it mighe
conceivably turn out to be inconsistent, and if it is inconsistent it
certainly isn't conservative. We would however regard a proof cthat
standard mathematics was inconsistene as extremely surprising, and
as showing that standard mathematics needed revision. Equally, it
would be extremely surprising if it were to be discovered that standard
mathematics implied that there are at least 10° non-mathematical
objects in the universe, or that the Paris Commune was defeated; and
were such a discovery to be made, all but the most unregenerate ration-
alist would take this as showing thar standard mathematics needed re-
vision. Good mathematics is conservative; a discovery that accepted
mathematics isn’t conservative would be a discovery that itisn’t good.

Indeed, as some of the mathemarical arguments in the Appendix to
this chapter show, the gap between the claim of consistency and the
full claim of conservativeness is, in the case of mathematics, a very
tiny one. In fact, for pure sct theory, or for sct theory thac allows for
impure sets but doesn’t allow empirical vocabulary to appear in the
comprehension axioms, the conservativeness of the theory follows
from its consistency alone. For full set theory this is not quite true; but

——a large part of the content of the conscrvativeness claim for full set
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application) follows from the consistency of st theory alone (and still
more of the content follows from slightly stronger assumptions, like
that full set theory is ~consistent). These claims are demonstrated in
the Appendix to this chapter. In any casc, I think that the two previous
paragraphs show that the same sort of quasi-inductive grounds we
have for belicving in the consistency of mathematics extend to its
conservativeness as well. As we saw carlicr, this means that there is a
marked disanalogy between mathematical “theorics and physical
theories about unobscrvablc cntitics: physical theories about un-
obscrvables arc certainly not conservative, they give rise to genuinely
new conclusions about observables.

What the facts about mathematics 1 have been emphasizing here
show is that cven somcone who doesn’t believe in mathematical
entities is free to usc mathematical existence-assertions in a certain
limited context: he can usc them freely in deducing nominalistically-
stated conscquences from nominalistically-stated premiscs. And he can
do this not because he thinks those intervening premises are true, but
because he knows that they preserve truth among nominalistically-
stated claims.!?

This point is not of course intended to license the use of mathematical
existence asscrtions in axiom systems for the particular sciences: such
a usc of mathematics remains, for the nominalist, illegitimate. (Or more
accurately, a nominalist should treat such a use of mathematics as a
temporary expedient that we indulge in when we don’t know how to
axiomatize the science properly, and that we ought to try to climinate.)
The point 1 am making, however, does have the consequence that
once such a nominalistic axiom system is available, the nominalist is free
to usc any mathematics he likes for deducing conscquences, as long as
the mathematics he uses satisfics Principle C.

So if we ignorc for the moment the role of mathematics in
axiomatizing the sciences, then it looks as if the satisfaction of Principle
C is the really cssential property of mathematical theorics. The fact
that mathcmatical theories have this property is doubtless one
motivation for the platonist’s assertion that such theories are ‘truc in
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all possible worlds’. It does not appear to me, however, that the
satisfaction of Principle C provides rcason for regarding a theory as
truc at all (even in the actual world). Certainly such speculations, typical
of extreme platonism, as to for instance whether the continuum
hypothesis is ‘really truc’, seem to Jose their'point once one recognizes
conscrvativeness as the essential requirement of mathematical theories:
for the usual Godel and Cohen relative consistency proofs about set
theory plus the continuum hypothesis and set theory plus its denial are
easily modified into relative conservativeness proofs. In other words,
assuming that standard sct theory satisfies Principle C, so does standard
set theory plus the continuum hypothesis and standard set theory plus
its denial; so it follows that cither theory condd be wsed withont harw in
deducing conscquences about concrete entitics from nominalistic theorics. The
same point made about the continuum hypothesis holds as well for
less recherché mathematical assertions. Even standard axioms of number
theory can be modified without endangering Principle C; similarly
for standard axioms of analysis. What makes the mathematical
theories we accept better than these alternatives to them is not that
they are true and the modifications not true, but rather that they are
more useful: they are more of an aid to us in drawing consequences
from those nominalistic theorics that we are interested in. If the world
were different, we would be interested in different nominalistic
theories, and in that case some of the alternatives to some of our
favoritc mathematical theories might be of more use than the theories
we now accept.’! Thus mathematics is in a sense empirical, but only
in the rather Pickwickian sense that is an empirical question as to which
mathematical theory s useful. Te is in an equaily Pickwickian sense,
however, that mathematical axioms are a priori: they are not a priori
true, for they are not true at all,

The view put forward here has considerable resemblance to the
logical positivist vicw of mathematics. One difference that is probably
mostly verbal is that the positivists usually described pure mathematics
as analytically true, whereas 1 have described it as not true at all; this
difference is probably mostly verbal, given their construal of ‘analytic’
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as ‘lacking factual content’. A much more fundamental difference is
that what worried the positivists about mathematics was not so much
its postulation of entitics as its apparently non-cmpirical character, and
this was a problem not only for mathematics, but for logic as well,
Hence they regarded logic as analytic or contentless in the same sense
that mathematics was. 1 believe that this prevented them from giving
any clear explanation of what the ‘contentlessness’ of mathematics
(or of that part of mathematics that quantifies over abstract entities)
consists in. The idca of calling a logical or mathematical assertion
‘contentless’ was supposed to be that 2 conclusion arrived at by a
logical or mathematical argument was in some sense ‘implicitly con-
tained in’ the premises: in this way, the conclusion of such an argument
was ‘not genuinely new’. Unfortunately, no clear explanation of the
idea that the conclusion was ‘implicitly containcd in’ the premises was
ever given, and I do not believe that any clear explanation is possible.
What I have tried to do in this chapter is to show how by giving up
(or saving for separate explication) the claim that logic (and that part
of math that doesn’t make reference to abstract entities) doesn’t yield
genuinely new conclusions, we can give a clear and precise sense to the
idca that mathematics doesn't yield genuinely new conclusions: more
precisely, we can show that the part of math that does make reference
to mathematical entities can be applied without yielding any genuinely
new conclusions about non-mathematical entities.

APPENDIX: On Conservativeness

It may be illuminating to give two mathematical arguments for the
conservativencss of mathematics. The first argument proves, from a
set-theoretic perspective (more specifically, from the perspective of
ordinary sct theory plus the axiom of inaccessible cardinals) that
ordinary set theory (and hence standard mathematics, which is
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reducible to ordinary set theory) is definitely conscrvative. The second
argument is a purcly proof-theorctic one: it establishes a slightdy
restricted form of the conservativeness claim on the basis merely of
the assumption that standard sct theory is consistent. This is illumin-
ating in showing that the assumption of-the conservativeness of set
theory is much ‘closcr to’ the assumption that set theory is consistent
than to the assumption that it is true.

As a preliminary, let’s introduce some notation. Let ZF be standard
Zermelo-Fracnkel set theory (including the axiom of choice); let
restricted ZFU be ZF modified to allow for the existence of urelements,
but not allowing for any non-set-theorctic vocabulary to appear in
the comprehension axioms (for definiteness, we may stipulate that it
contains as an axiom that there is a set of all non-scts); and if V is a
class of expressions, let ZFUy be restricted ZFU together with any
instances of the comprehension schemas in which the vocabulary in
V as well as the set-theoretic vocabulary is allowed to appear. What
I earlicr called “full sct theory’ isn’t really a single theory: rather, to
‘apply full sct theory’ in the context of a theory T is to apply ZFUy(q),
where V(T) is the vocabulary of T. Conscquently, what we want to
prove is that for any theory T, ZFUyy, applics conscrvatively to T.
That is, we want to prove

(Co) If T is any consistent body of assertions, then ZFUy(g) + T*

is also consistent.

(The T here is the N4 — A of Principlc C’). This in fact will suffice
for proving the conscrvativeness of ZFUyq, + S, for any mathematical
theory S: for standard mathematical theories are embeddable in ZF.

So much for preliminarics. How then do we prove that (Cg) holds?
The obvious set-theoretic linc of proof is this:

Supposc T is consistent; then it has a model M of accessible cardinality,
say with domain D. Pick any entity ¢ not in D. (c is to be thought of
as the empty set.) Let Do be Du {¢}; Let D, consist of all non-cmpty
subsets of Dy; let D, consist of all non-cmpty subscts of DouD,y;
and so on. Let D, be DguD,UD,u...; let D, ., consist of all
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non-cmpty subscts of D,,; and so on. Continuing in this way until you
reach an inaccessible cardinal, you get—if certain initial precautions!2
are taken on the choice of D and e—a model of ZFUyq, + T*.
(It is a model of ZFUy,+ T* rather than merely of ZFU + T*
because at cach stage you've added every set of things available at
previous stages.) So ZFUyy, + T* is consistent. Q.E.D.

Now let us tum to the proof-theoretic linc of argument for con-
servativeness; the point of doing this is to make clear how narrow the
gap between the consistency of mathematics and its conservativeness is.

Indeed, in the case of mathematical theories which don’t allow for
impure abstract entities (e.g. number theory by itself, or ZF), con-
sistency implics conservativeness: this is an obvious conscquence of
the Robinson joint consistency theorem.!® The same result holds also
in the more intércsting case of restricted ZFU: here onc nceds, in
addition to the Robinson theorem, the well-known fact that if ZFU
is consistent then one can’t prove any result about how many non-
scts there are.'® But in the really interesting case of full ZFU, this
whole line of argument via the joint consistency theorem is blocked
by the fact that the empirical vocabulary that appears in the thecory T
also appears in the set-theoretic axioms.

The simplest thing to do in this casc is to mimic proof-theoretically
the sct-theoretic argument given two paragraphs back: doing so, it
becomes an argument that under certain conditions ZFUyq,+T* is
interpretable within ZFUy,;), and in fact within ZF. (We don’t need
the inaccessible cardinal assumption anymore.) If the ‘certain con-
ditions” were merely that T is consistent, then we'd know that (Co)

holds as long as ZF is consistent, and this is what we wanted. Un-
fortunately however we need the stronger assumption that T is
provably consistent within ZF; that is, the best we can show is that if
ZF is consistent, the following holds:*$

(C,) ¥Tis any body of asscrtions whose consistency is provable in
ZF, then ZFUy g, + T* is consistent.

This is a restricted version of conscrvativeness: it says that full set
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theory applies conservatively fo theories which are modellable in ZF.
In actual applications this is probably as much of the conscrvativeness
claim as we ever need. For instance, later on in the book we will want
to know that mathematics applies conscrvatively to a nominalistic
version of Newtonian gravitation theory, Ng. But it is completcly
obvious that if Ny is consistent then it is modellable in ZF (and the
same would presumably be true for other nominalized physical
theorics); so the conservativeness result we actually need follows
merely from the consistency of ZF.

Scott Weinstein (besides clearing up a number of confusions I had
gotten into concerning the issues of the last paragraph) pointed out
to me that if you strengthen the consistency assumption about ZF

slightly, to w-consistency (or cven something a bit weaker than that
known as 1-consistency), you can strengthen (C,) in an attractive way:

you can then prove

(Cy) If T is any consistent and recursively enumerable body of
. . 16
assertions, then ZFUy g, 4+ T* is consistent.

It is all the morc obvious that this would be sufficient for practical
applications. .

Philosophers discussing sct theory tend to discuss two of its prop-
ertics: its consistency, and its (alleged) truth. The argument of this
monograph is that the latter is completely irrclevant, and: tha't the
former is perhaps a bit too weak—it is too weak unless one is satisfied
with (C,) instead of the full (Co). [Of coursc, for the kind of set th.cory
philosophers tend to discuss—pure st theory, i.c. ZF—there is no differ-
ence at all between consistency and conservativeness (or rather, though
they differ conceptually, they arc provably equivalent). I'But pure sct
theory isn't what is of interest, since as remarked before 1-t can never
be applicd to the physical world, so this is not much of a justification
for ignoring conservativeness.] But though we perhaps need to
assume 2 bit more than consistency, we don't need to assume all that
much morc; and in any case it scems pretty obvious that the stronger
property of conservativeness does in fact obtain.
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First Ilustration of Why Mathematical
Entities are Useful: Arithmetic

I have explained why it is legitimate for a nominalist to use mathematics
in making inferences between nominalistically-stated sentences; but
I haven't said anything about why or in what way it is uscful for him
to do so. Itis important to have a rather vivid understanding of the way

_ that mathcmatics is uscful in such contexts if onc is to grasp my strategy

for nominalizing physical theories, and so I will devote both this
chapter and the next to the matter.

Suppose N is a body of nominalistically-statcd premises; in the case
that will be of primary intcrest, N will consist of the axioms of a
nominalistic formulation of somc scicntific theory. I think that the key
to using a mathematical system S as an aid to drawing conclusions
from a nominalistic system N lics in proving in N* + S the equivalence
of a statement in N* alone with some other statement (which I'll call
an abstract comnterpart of the statement in N*) which quantifies over
abstract entitics. Then if we want to determine the validity of an
inference in N* (or cquivalently, of an inference in N), it is unnccessary
to proceed directly; instead we can if it is convenient ‘ascend’ from one

20
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or more statements in N* to abstract counterparts of them, then use
S to prove from thesc abstract counterparts an abstract counterpart of
some other statement in N*, and ‘descend’ back to that statement in
N*. T will illustrate how this procedure works in certain concrete
cascs; but again I must emphasize that the only thing required for the
procedure to be legitimate is not that S bg true but mercly that N*+ §
be a conservative extension of N*, a condition which will always be
met if Principle C of the previous chapter is satisfied.

My first illustration of this gencral procedure will be a very simple
one: here, the mathematical theory S to be applied is simply the
arithmetic of natural numbers (or more precisely, arithmetic plus a
small amount of set theory, since ari:hgnc:ic without such things as
functions from concrete entitics to numbers can never be applied).

Let N be a theory that contains the identity symbol and the usual
axioms of identity, but docs not contain any terms or quantifiers for
abstract objects. In particular, N will not contain singular terms like
‘¢7’. Tt will, however, be convenient to suppose that N contains,
besides the usual quantifiers ‘¥ and ‘T, also quantifiers like “34,'
(meaning ‘there arc exactly 87) and ‘3,4, (meaning ‘there are at
least 87'). The logic is still of course, recursively axiomatizable—c.g. we
could merely add to standard logic the axioms

3, oxA(x)« 3xA(x)
3, xAX) - Ix[AQR) A 3, 5v(y # x A AR

where k is the decimal numeral that immediately succeeds j, and
IxAR)e 3, xA(x) A 3, XA ),

where k and j arc as above. In supposing that N contains this cxtra
structure, we are not enriching cither the expressive or the deductive
power of N, we are merely ensuring that we can say simply what can
be said only in a very roundabout way on the usual but artificial
limitation to the two standard quantificrs plus identity. In particular,
I must emphasize that by giving N this extra structure, I am not
giving it any arithmetic: it contains no singular terms or quantifiers
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for numbers or any other abstract entitics: the numeral ‘87" occurs in
it not as a name, but mercly as part of an operator symbol. Our goal
is to show how inferences in N can be facilitated by introducing a
system S that does contain arithmetic.

To sec this, consider the following argument in N:

1 there arc exactly twenty-onc aardvarks (i.e., 3,,xA(x));
2 on each aardvark there are exactly threc bugs;
3 cach bug is on exactly one aardvark; so

4 there arc exactly sixey-three bugs.

Is this valid? If one reasons in N, it will take a lot of work to find out—
the inference needed for getting from' the premises to the conclusion
is long and tedious. (Though not nearly as bad as it would have been
if we hadn’t introduced the numerical quantificrs!) But if we have at
our disposal a mathematical system S that includes the arithmetic of
the natural numbers plus some set theory, things are considerably
simplificd. For then we can take, as an abstract counterpart of the first
premise, the claim '

r

1" The cardinality of the set of aardvarks is 21;

‘s : : .
1’ is an abstract counterpart of 1 because the equivalence of 1° and 1 is

. 7 -
provable in N + S.!7 Abstract counterparts of the other premises, and
of the conclusion, are as follows:

’

2’ All sets in the range of the function whosc domain is the set of
aardvarks, and which assigns to each entity in its domain the set
of bugs on that entity, have cardinality 3.
3° The function mentioned in 2’ is 1-1 and its sange forms a
partition of the sct of all bugs.
4’ The cardinality of the set of all bugs is 63.

But now in S we can prove:
(3) 1If all members of a partition of a set X have cardinality a, and

the cardinality of the set of members of the partition is §, then
the cardinality of X is a- 8.
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(b) The range and domain of a 1-1 function have the same car-
dinality; and
(¢) 3-21=63.

But 1’, 2', and 3, in conjunction with (a)-(c), entail 4'; and since
1'-4" arc abstract countcrparts of 1-4, i.c. their equivalence with 1-4
is provable in N + §,'7 we have proved 4 from 1-3 in N+ 5. So, by
Principle C, 4 must follow from 1-3 in N alonc. Itis by some argument
such as this that we know that 4 follows from 1-3 in N; certainly it
isn't on the basis of having gone through a derivation in N that we
know this.

The above illustration'® of the application of mathematics is a very
special one. Its special nature is illustrated by the fact that nothing was
assumed about the theory N other than that it contained the logic of
identity (supplemented with the numerical quantifiers; but these are
in principle superfluous). This is not typical of the application of
abstract entitics in general, though it is typical of the application of
the arithmetic of natural numbers. The fact that the natural numbers
can find uscful application outside the context of any powerful and
specialized theorics is what is behind the widely shared fecling that
the arithmetic of natural numbers has a very special cpistemological
place. (Cf. for instance Kronecker's remark ‘God created the natural
numbsers, all the rest is the work of man.’)

But the fact that the arithmetic of natural numbers has this special
status is not sufficicnt grounds to grant that it is truc. For I have ex-
plained its special status insrumentally: its special status arises from
its utility, and since we've shown that it is always in principle climinable
(i.c. you don’t get any results with it that you couldn’t get without it),

its utility is no grounds for believing it true.
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Second Illustration of Why Mathematical
Entities are Useful: Geometry and Distance

Let us turn now to more complicated applications of abstract entities.
Here, too, the situation fits the general description given in the second
paragraph of Chapter 2: abstract entities are useful because we can use
them to formulate abstract counterparts of concrete statements; then
in proving a conclusion in N* from premises in N*, we can at any
convenient point ‘ascend’ from concrete statements to their abstract
counterparts, proceed at the abstract level for a while, and then
finally *descend’ back to the concrete.

In the cases of application of mathematics that I will now turn to—
which are the cases most important for physical theory—the key to
carrying out the general strategy of finding ‘abstract counterparts’ is
proving a representation theorem. Supposc that using some mathematical
theory S which satisfies Principle C of Chapter 1, we can prove the
existence of some mathematical structure # with certain specified
properties. If we can then, using N* + S, prove the cxistence of one
or more homomorphisms (structure-preserving mappings) from
concrete objects (or k-tuples of concrete objects) into that mathematical

24
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structure &, then such a homomorphism will serve as a ‘bridge’ by
which we can find abstract counterparts of concrete statements.
Conscquently, premises about the concrete can be ‘wranslated into’
abstract counterparts; then, by rcasoning within S, we can prove
abstract counterparts of further concrete ‘statements, and then use the
homomorphism to descend to the concrete statements of which they
arc abstract counterparts. The concrete conclusions so reached would
always be obtainable without the ascent into the abstract {provided
that the mathematical theory S satisfies Principle C); but the ascent
into the abstract is often a tremendous saving of time and effort.

Let me illustrate this with an example: Hilbert's axiomatization of
Euclidean geomerry.'® Any fully formulated physical theory will
include a theory of physical space (or better, of space-time; but since
our concern for the moment will be with Euclidean geometry, let's
just consider space). Euclidean geometry, considered as a theory of
physical space (which is how Euclid originally conceived it) is actually
false, but that doesn’t matter for my purposes: a false theory is still a
theory, and we can usc such a theory to illustrate the applicability of
mathematical systems like the system of real numbers. Hilbert's
formulation of the Euclidean theory is of special interest here because
(besides being rigorously axiomatized) it does not employ the real
numbers in the axioms; nevertheless, it explains why the system of real
numbers can be usefully applied in geometric reasoning.

Without purporting to be very precise, we can say that Hilbert's
theory is one in which the quantifiers range over regions of physical
space, but do not range over numbers. The predicates of the theory
include several, such s ‘s poiit’, which need not concern us. In
addition they include the following:

() a three-place predicate betireen, where ‘y is between x and 2°
(symbolically, ‘y Bet x2°) is understood intuitively to mean that
y is a point on the linc-segment whose endpoints are x and 2
(the casc where y=x or y=2z is allowed, i.c. we're dealing
with what I'll call inclusive betwecnness);
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(b) a four-place predicate of segment-congrience, which I'll write as
‘xy Cong zw’, understood intuitively to mean that the distance
from point x to point y is the same as the distance from point
z to point w;

and perhaps also

(c) a six-place predicate of angle-congruence, which I'll write as
‘xyz A-Cong tuv’, understood intuitively to mcan that the
angle formed by points x, y, and z with vertex at y is the same
size as the angle formed by points to t, u, and v with vertex at u.

(The last of thesc predicates doesn’t actually nced to be taken as
primitive, it can be defined in terms of the others) Now, I have
exphined (b) and (c) intuitively in terms of distance and angle-size.
But these explanations are not part of the theory: in fact the notions
of distance and angle-size can’t be defined in the theory (as is obvious
from the fact that the theory doesn’t quantify over real numbers).
The fact that these quantitative notions arc not definable in the theory
might appear to raise a problem for Hilbert's formulation, for much
of the reasoning in a typical book on Euclidean gcometry proceeds in
terms of the lengths of linc-segments and/or the size of angles: in fact,
many of the theorems are explicitly theorems about lengths (c.g.

~ Pythagoras’s theorem). Does this mean that Hilbert Icft something

out? No, for he proved the kind of theorem I'm calling a representation
theorem: he proved (in a broader mathematical theory) that given any
model of the axiom system for space that he had laid down, there
would be at lcast onc function d mapping pairs of points onto the
non-ncgative real numbers, satisfying the following ‘*homomorphism
conditions’:

(a) forany points x, y, z, and w, xy Cong zw if and only if d(x,y) =
d(z,w);
and (b) for any points x, y, and z, y is between x and z if and only
if d(x,y) + d(y,2) = d(x,2).
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So if we take d to represent distance, segment-congruence becomes
‘equivalent’ to just the claim about distance we'd expect, and similarly
for berweenness. (Hilbert also proved the existence of a function m
mapping triples of points into numbers, satisfying analogous con-
ditions: m was a represcntation for angle-sizes.) Given these results it
was casy to show that the standard Euclidean theorems about lengths
and angle-sizes would be true if restated as theorems about any
functions d and m meeting the given conditions. So in the geometry
itself we can’t talk about numbers, and hence we can't talk about
distances or angle-sizes; but we have a metatheorctic proof which
associates claims about distances or anglesizes with what we can say in
the theory. Numerical clims then, are abstract counterparts of purcly
geometric claims, and the equivalence of the abstract counterpart with
what it is an abstract counterpart of is established in the broader math-
ematical theory.

Incidentally, in addition to the representation theorems Hilbert
established smiquencss theorems, onc for distance, one for angle-size:
c.g- the uniqueness theorem for distance says that if d; and d; are two
functions mapping pairs of points into non-ncgative reals, both of
which satisfy the two conditions just laid down, then d; and d, differ
only by a positive multiplicative constant; and conversely, that if
d, and d, differ only by a positive multiplicative constant, then d,
satisfics (a) and (b) if and only if d; docs. Thus the fact that gcometric
laws, when formulated in terms of distance, are invariant under
multiplication of all distances by a positive constant, but are not in-
variant under any other transformation of scale, reccives a satisfying
explanation: it is explined by the futringe farte ahont physical space,

i.c. by the facts about physical space which arc laid down without

L

reference to numbers in Hilbert's axioms. This is 2 point that will bo—"

important later, but for now let's go back to the representation
thecorem.

Hilbert’s representation theorem, I've said, shows that statements that
talk about space alone, without reference to numbers, are cquivalent to
certain ‘abstract counterparts’ which do talk about numbers. Because

2 ALY R
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28 SCIENCE WITHOUT NUMBERS

of this, we can use the theorem as a device for drawing conclusions
about space (conclusions statable without rcal numbers) much more
eas.ily than we could draw them by a dircet proof from Hilbert's
axioms. For instance, it is not difficult to say intrinsically (sec Figure 1):

() thatay, a;, a; and b,, b,, by form right triangles with right
angles at a, and b,;

(b) that ﬁrc is a segment cd such that a,a, is twice the length of
cd, 2,a; is five times the length of cd, b,b, is three times the
length o@ and b,b, is four times the length of cd. (E.g. we
say that a,a, is twice the length of cd by saying that there is a
point x between a, and a, such that a,x Cong cd and xa, Cong

cd)

FIGURE 1

an might then wonder whether 2,2, is longer than b5, If one
trics to answer this without using the representation thcorcx;n. it will
-bc very difficult. But if onc uscs the representation theorem, one can
u.wokc Pythagoras's ihcorcm to quickly establish that a,a; is (/29
times the length of cd and that b,b, is five times the length of cd
and therefore that a,a, is indced longer than b, b,. )

. So invoking real numbers (plus a bit of sct theory) allows us to make
inferences among chims not mentioning real numbers much more
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quickly than we could make those inferences without invoking the
reals. And the inferences we make in this way will be correct every
time. Prima facie, this might scem to be good evidence that the theory
of real numbers (plus some set theory) is true: after all, if it weren’t
true, invoking it in arguments in this way ought to sometimes lead
from otherwise true premises to a false conclusion. But we've scen in
Chapter 1 that this prima facie plausible argument is deeply mistaken:
the fact that the theory of real numbers (plus set theory) has this
truth-preserving property is a_ fact that can be explained without
assuming that it is frue, but merely by assuming that it is conservative,
which is a different matter cmirel'yl; in fact, as remarked in the
Appendix, we really need only to assume 2 restricted form of con-
servativeness, which follows from the dmsismu'y of sct theory alone.

i X XN E N
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Nominalism and the Structure of

Physical Space

The reader might reasonably wonder about the asscrtion at the very
end of the previous chapter: after all, Principle C says that when
mathematical thcories are added to nominalistic theories, you can
never deduce any nominalistic consequences you couldn’t deduce
otherwise; but I haven’t vet claimed that Hilbert’s formulation of the
Euclidean theory of space is genuinely nominalistic, 1 have claimed
only that it docsn’t quantify over real smmbers. Now, this worry can
be casily alleviated: for whether or not Hilbert's theory ought 0 be
counted nominalistic on philosophical grounds, there can be no doubt
that (if set theory is consistent) our mathematical theories apply to it
in a conservative fashion. I will cxplain this, but first I want to raise
the more controversial question of whether Hilbert’s formulation of
the Euclidean theory of physical space can be counted as genuinely

nominalistic on philosophical grounds. This question raises scveral
important issucs.

.

3o
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Some of these issucs can be brought out by considering the following
objection. ‘Hilbert’s axiomatization of geometry just builds into
physical space all the complexity and structure that the platonist
builds into the real number system. For instance, Hilbert's axiomatiz-
ation requires physical space to be uncountable, and in fact requires
lines in physical space to be isomorphic to the real numbers. And there
doesn’t seem to be a very significant difference between postulating
such a rich physical space and postulating the real numbers.”

In reply to this, let me first remind the reader that as 1am concciving
nominalism, the nominalistic objcction 1o using real nunibers was not
on the grounds of their uncountability or of the structural assumptions
(c.g- Cauchy completeness) typically made about them. Rather, the
objection was to their abstracmess: cven postulating one real number
would have been a violation of nominalism as I'm concciving it.
Converscly, postulating uncountably many physical cntities (c.g. un-
countably many parts of a physical object, or of a light ray, or, as here,
of physical space itsclf) is not an objection to nominalism; nor does it
become any morc objectionable when onc postulates that these physical
entitics obey structural assumptions analogous to the oncs that platonists
postulate for the real numbers.

Perhaps it is a bit odd to usc the phrase “physical entity” to apply to
space—time points.?® But however this may be, space-time points
are not abstract cntitics in any normal sense. After all, from a typical
platonist perspective, our knowledge of mathematical structures of
abstract entitivs (.. the mathematical structure of real numbers) s
a priori; but the structure of physical space is an empirical matter.
That is, most platonists who believe current physical theory believe
that it is a priori truc that there are real numbers obeying the usval
laws, and that it is a high-level empirical hypothesis (not easily dis-
confirmed, but subject to revision by the development of an alternative
physical theory) that there are lines in space which (locally anyway) are
isomorphic to the real numbers. No platonist would identify the real
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numbers with the points on any physical line: for one thing, it would
be arbitrary which such line one picked to identify the real numbers
with, and arbitrary which point on the line to identify with o and
which with 1; but more fundamentally, to make any such identification
would be to identify the rcal numbers with something we can know
about only empirically. (Occasionally it is suggested by those secking
a satisfactory formulation of quantum mechanics that we ought to
view space and time as quantized. To my knowledge, no such pro-
posal has ever been worked out very far; but if one were, and if it turned
out to make the best sense of the evidence and best solve the inter-
pretational difficulties of quantum theory, we would have strong
empirical reasons to believe that between any two space-time points
there were only finitcly many others. Surcly however we ought not
to count such a development as an empirical discovery that there are
only finitcly many real numbers between o and 1.)

Even ignoring these points, there is a further reason that postulating
physical space isn’t like postulating rcal numbers: and that is that the
ideology that gocs with the postulate of points of space is less rich than
that which goes with the postulatc of the real numbers. With the
postulate of rcal numbers goes the operations of addition and mul-
tiplication: no such operations arc dircctly defincd on space-time
points in Hilbert's theory; indeed none are even implicitly definable
since any introduction of an addition or multiplication function on
space-time points would have to rcly on an arbitrary choice of one
point to serve as 0 and another to scrve as 1. Somcthing like addition
can be reconstructed within Hilbert’s theory, but it is addition of
intervals rather than of points (and it doesn’t give an addition function
but rather a non-functional relation, ‘interval x is the same length
as the sum of intervals y and 2'). With multiplication, we can’t even
reconstruct the relation of onc interval being the product of two others:
any introduction of such a product relation on intervals would have
to depend on an arbitrary choice of onc interval to serve as ‘the unit
interval’, and no such notion is employed in the Hilbert theory.
The best onc can do with the Hilbert primitives is to reconstruct
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comparisons of products of intcrvals, and it takes quite a bit of work to
reconstruct such comparisons in a suitably gencralizable way.?* These
obscrvations make it clear that the objection that we arc using the
space-time points as if they were real numbers is quite erroncous. .,
These points arc further reinforced by the fact that the usual theory
of real numbers includes not only the first-order theory that invokes
only the functions of addition and multiplication: it includes also the
apparatus of quantification over functions defined on the real numbers,
and also cnough higher-order seis to enable us to define the continuity,
diffcrentiability, ctc. of such functions. No such apparatus is invoked
in the theory that takes space-points as the objccts of quantification:
theugh we will evenrually see that the invariant content of many ¢
statements of continuity, differentiability, ete. of functions is ex-
pressible in the system to be developed, it is to be expressed without
referring to or quantifying over functions or anything like functions.
Onc might think that if the system of space-time points was as
distinct from the system of rcal numbers as I've been saying, then it
would be a remarkable coincidence that points on a physical line
should happen to have preciscly the structure of such an important
mathematical system as the real numbers, and that important math-
cmatical operations (c.g. differentiation) on functions of real numbers
should have analogs which play an important role in the physical
theory. Surely, it could be argued, this can’t be a coincidence: doesn’t
this show then that the physical theory is really platonism in disguisc?
The trouble with this objection is that it completely ignores history:
the theory of real numbers, and the theory of differentiation ctc. of
functions of real numbers, was developed precisely in order to deal
with physical space and physical time and various theorics in which
spacc andfor time play an important role, such as Newtonian mechanics.
Indeed, the reason that the real number system and the associated
theory of diffcrentiation ctc. is so important mathematically is preciscly
that so many of the problems to which we want to apply mathematics
involve spacc andfor time. It is hardly surprising that mathematical
theorics developed in order to apply to space and time should postulate
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mathematical structures with some strong structural similaritics to the
physical structures of space and time. It is a clear casc of putting the
cart before the horse to conclude from this that what I've called the
physical structurc of space and time is really mathematical structure in
disguise.

So in summary: there is indecd a good deal in common between on
the onc hand the structure of physical space that both 1and the platonists
postulate and on the other hand the structure of mathematical objects
postulated by platonists; and there is an obvious reason why there
should be this commonality of structure, given that the mathematics
was developed to deal with physical space (and time). Still, there are
many ways in which the physical strueture is less rich than the math-
ematical structure (c.g. no addition rclation defined on points; no
multiplication rclation defined on points or even on intervals; no
functions, scts of functions, ctc.). And the physical structurc is all an
empirical postulate, subject to revision by experience in a way that
mathcmatics is not.

There are, to be sure, certain views of space-time according to
which the quantification over space-time points or spacc-time regions
really would be a violation of nominalism. I'm speaking of relationalist
views of spacc-timc, as opposed to the substantivalist view. According
to the substantivalist view, which I accept, space-time points (and/or
space-timc regions) arc entitics that exist in their own right. In con-
trast to this are two forms of rclationalist view. According to the first
(reductive relationalism), points and regions of space-time arc some sort
of sct-theorctic construction out of physical objects and their parts;
according to the second {climinative relationaliem), it is illegitimate to
quantify over points and regions of space-time at all.?? It is clear that
reductive rclationalism is unavailable to the nominalist: for according
to that form of relationalism, points and regions of space-time are
mathematical entities, and hence entities that the nominalist has to
rcject. So a nominalist must cither be a substantivalist or be an climin-
ative relationalist, and only in the first case can he find Hilbert's theory
acceptable.
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It is my view however that indcpendently of nominalism, a sub-

stantivalist view is preferable to cither form of relationalist view, for a
number of reasons most of which cannot be discussed here. I will
merely say thatI don't think that any relationalist programme, of cither
a reductive or an climinative sort, has ever been satisfactorily carried
out, cven given a full-blown platonistic apparatus of scts. The problem
for relationalism is especially acute in the context of physical theories
that take the notion of a ficld scriously, c.g. classical clectromagnetic
theory. From the platonistic point of view, a ficld is usually described
as an assignment of some property, or some number or vector or
tensor, to cach point of space-time; obviously this assumes that
there arc space-time points, so a relationaiist is gomg to have to
cither avoid postulating ficlds (a hard road to take in modern physics,
I'believe) or elsc come up with some very different way of describing
them. The only alternative way of describing ficlds that 1 know is the
one I usc later in the monograph in conncction with the gravitational
potential field in Newtonian mechanics: it does without the propertics
or the numbers or vectors or tensors, but it does not do without the
space-time points.** In general, it scems to me that recent developments
in both philosophy and physics have made substantivalism a much
more attractive position than it once was; it certainly has been adopted
by the majority of the ‘new wave’ of space—time theorists. (For two
good discussions, scc John Earman, ‘Who's afraid of Absolute Space?
and Michael Fricdman, Foundations of Space~Time Theories**). In any
casc, substantivalist views of space-time arc certainly possible, and on
such a substantivalist view it is perfectly nominalistic to quantify over
SPACC-thne points andfur spuce-time regions.

This doesn’t justify quantifying over points or regions of space
actually, if a point or region of space is construed as an entity that
endures through time. And indeed, there are real difficulties about
quantifying over points or regions of space on any such construal, for
on such a construal it would scem to make objective sense to ask
whether two non-simultancous events are at the same point of spacc,
and hence 1o ask whether a given object is at absolute rest. The notion
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of absolute rest is one that positivists have quite rightly objected to, in
my view: this is a point 1 will return to bricfly in the .ncxt.chaptcr.
Fortunately, however there is a way to construc quanuﬁca.non over
points and regions of spacc so that it involves no commitment ‘to
absolute rest, in any physical theory in which a notion of simultancity
is availablc: simply regard a claim about spacc as an abbreviation fOt.thc
assertion that the claim holds for each of the spatial slices of space-time
‘(i.c. the stices generated by the simultancity relation). S.o the clgtm\
that physical space is Euclidean is translated into the cleim that each

of the spatial slices of space-time is Euclidean. It is trivial to rewrite

Hilbert’s axiomatization of the gcometry of space so that thatis explic.itly
what it says; if we do so, then the objects in the domain of the quantifier
are really space-time points rather than points of space, and t?xcrc can
be no danger of viewing the theory as being committed to the idea th.:.
absolutc rest is a physically significant notion. ([ won’t bother to explain
how to rewrite Hilbert's theory in this way however, since the theory
that resulted would be of less use than a stronger nominalistic theory
about space-time structure to be set out in Chapter 6.)

1

I have allowed our nominalist to quantify over points or regions of
space-time. Is there any reason why he shouldn't qu:?nflfy over both
points and regions? Some philosophers would be willing to fxcccpt
the existence of certain kinds of regions—say, regular open regions—
but not of points. This is not a view [ objeet t0; it may well be po.ss1ble
to find nominalistic systems similar in many respects to the Hilbert
system (and to the systems to follow later on in.thc l.aook), but that
quantify over arbitrarily small regular open regions instcad of over
points; and if it is possible, then the nominalist has no r-cason to object
to dispensing with points in favor of regular open regions. But 1 :?lso
do not scc that the nominalist has any particular reason to forego Po‘f’ts
for arbitrarily small regular open regions—the desire for such purity
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is a quasi-finitist desire, not a nominalist desire. Since the desire to
forego points is not one I share, and since it appears to be mathematically
difficult, I will make no attempt 1o satisfy that desire in this book.
How about the converse question: given a nominalism in which we
quantify over spacc-time points, is there any added difficulty in
quantifying over regions? If our nominalist accepts Goodman's
calculus of individuals,®* then the introduction of points carries with
it the introduction of regions: for a region is just a sum (in Goodman's
sense) of the points it contains.?® And even if one does not accept the
caleulus of individuals in general—even if one thinks that there are
cntities that can’t meaningfully be ‘summed’—there scems to be
litle motivation for allowing points and yet disallowing regions:
in fact, it scems artractive to regard points of space-time as a special
casc of regions, namely as regions of minimal size. So it seems to me
that regions are nominalistically acceptable. (I should note however
that only fairly ‘regular’ regions are directly used in the monograph, so
a nominalist who would balk at the use of highly ‘irregular’ regions
nced not balk at the uses to which regions will actually be put.)??

If these claims about what should count as nominalistic are accepted,
then there is at Jeast an important sense in which Hilbert’s formulation
of the Euclidean theory of space is or can with a little rewriting be
made nominalistic. Hilbert's theory is usually formulated as a second-
order theory, in which the first-order variables range over points,
lines, and planes; in other words, the first-order variables range over
regions of various kinds. Consequently, the second-order variables
range over sefs of points, lines, and planes, and that docsn’t Jook very
reminalistic, However, only one second~order axiom is really needed,
the Dedekind continuity axiom; and in this axiom onc quantifics only
over non-empty scts of points. This is important, for in the absenee of
any further use of sets, there is no substantive difference between a set
of points on the one hand and a Goodmanian sum of points or a region
on the other. So we can regard the sccond-order quantifiers in Hilbert’s
theory as ranging over regions. (And we can then if we like restrict
the range of the first-order quantificrs to points, cither by using
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sccond-order quantifiers whenever we want to spcak of lines and
planes, or by paraphrasing claims about lines and planes in terms of
chims about points and the relation of betweenness.) If we write
Hilbert’s theory in this way, then the quantifiers (both first-order and
second-order) range only over regions of spacc; and ['ve argucd that
regions of space are nominalistically acceptable entities. So if we write
Hilbert's formulation of the Euclidean theory of space in this way, it has a
purely nominalistic ontology.

It docs, admittedly, have a logic that one might find objectionable:
it involves what might be called the complete logic of the partjwhole
relation, or the complete logic of Goodmanian sums, and this is not a
recursively axiomatizable logic. To clarify this, note that the theory
as I've suggested it be written is still a second-order theory, that is, it
still involves second-order logic: it is merely that because of the nature
of the objects in the range of the first-order quantificrs (viz. because
they do not overlap), and because also we haven't invoked variables
for functions or for predicates of more than one place, no nominalist-
ically dubious entities need be invoked to serve in the range of the
sccond-order quantificrs.  This ontological difference is  perhaps
sufficiently striking so that we ought not to call the logic ‘sccond-order
logic’ anymore, but something clsc, such as ‘the complete logic of
Goodmanian sums'; nonetheless, the consequence relation is still like
that of second-order logic, which is not recursively axiomatizable.
Conscquently, insofar as onc objects to the strength of the sccond-
order conscquence relation, one will object to this version of Hilbert's
formulation of the Euclidean theory of space.

I share the feeling that the invocation of anything like a sccond-
order consequence relation is distasteful, and will discuss the possibility
of climinating it in the final chapter of the book. For now, let me simply
note that for platonistic theories too, the most natural and intuitive for-
smulation of a theory is often a sccond-order formulation. For instance,
intuitive sct theory—by which I mean not the intuitive Cantorian
set theory that was shown inconsistent, but the intuitive sct theory
that underlics the Zermelo-Fracnkel and similar axiomatizations—is 2

- e———
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sccond-order theory: c.g. it will include as an axiom or a theorem the
sccond-order scparation principle

VP Vx 3y Vz(zey s zex A P(z)).

To get a first-order axiomatization we have to weaken the theor
rc}?lacing the second-order axiom or axioms by schemas of ﬁrst-orer'
axioms, namely the schema of replacement andfor scparation. This
first-order weakening of intuitive set theory has a lot of ‘non-standard’
modcls (¢.g. models in which scts that are really infinite satisfy the
formula that is usually regarded as defining finiteness): such models
arc ‘non-standard’ prccisely because they are nor models of sccond-
order sct theory.*® Similarly, the second-order Hiibert axiomatization
of geometry can be weakened to a first-order system, in cither of two
ways: a scvere weakening which drops the use of regions entircly has
bc?n studied by Tarski?? and a less severe weakening to a ﬁrst—Zrdcr
axiomatization will be mentioned in the final chapter. But these first-
order weakenings of the Hilbert system all have non-standard modcls
These non-standard models together with the non-standard modc];
of first-order sct theory make the question of the relation between the
first-order nominalistic theory and the first-order platonistic theory
harder 1o scule; a representation theorem like Hilbert's is much casici
to state and prove if it is taken as relating the intuitive (second-order)
flominalistic geometry to the intuitive (sccond-order) set theory than
if it is taken as relating their first-order weakenings. For this reason 1
will’put off the issuc of first-order axiomatization until the final chapter
Sinccl ::m putting that off, it is necessary to make sure that nothing ix;
iy senisaiks in the previous chapier, about the philosophical significance
of Hilbert’s representation theorem, turned on the false a;sut11 tion
thflt Hilbert’s axiomatization was first order. The only remark \S\ich
might scem suspect from this point of view came at the very end of
the chapter. After pointing out that mathematical entities {real numbers
together with functions from space-time points into the reals) can
uscfully be employed in conncction with Hilbert's axiomatization, and
that when they are employed we are never led to a false conch'xsion
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about space from true premises, I raised the question of whether this
fact is evidence that the theories which postulatc mathematical entities
are true. My answer was no: we could, I chiimed, explain the truth-
preservingness of mathematics in this context entirely by its con-
servativeness, which is a much weaker (or more accurately, a quite
different) property; in fact, I remarked that we really only need to

assume a restricted form of conservativeness, which follows from the

consistency of mathematics alone. This, howcver, raises a question:
is the consistency of mathematics (i.c. the consistency of set theory,

since mathematics reduces to set theory) sufficient to entail that

mathematics can be employed in reasoning about second-order theories
in a truth-preserving way? The answer is that the semantic consistency
of second-order set theory.is sufficient for this conclusion: in fact, the
main arguments of the Appendix to Chapter 1 go over with litde
alteration when all the theories are taken to be second order.®® The
upshot is that in the context of reasoning about Euclidean gecomerry
at lcast, the nominalist can invoke the theory of rcal numbers (with
the attendant functions) as much as he likes, for he is guaranteed that
he can never be led into error by so doing.

5

My Strategy for Nominalizing Physics, and

So far, L have not tried to argue that we can come up with nominalistic
theorics to replace platonistic ones: 1 have mercly argucd that if we had
a nominalistic theory, then it would be legitimate to introduce
mathematics as an auxiliary device that aids u< in drawing inferences;
and I have tricd to indicate why that auxiliary device would be uscful,
and to show that its uscfulness as an auxiliary device is no grounds
whatever for supposing that it consists of a body of truths. The real
question then is whether an attractive nominalistic formulation of
physics is possible. 1 say an attractive nominalistic formulation, because
if no attractivencss requirement is imposed, nominalization is trivial;
simply take as axioms of your physical theory all the nominalistically-
statable consequences of the platonistic formulation of the theory.
(Or, if you want a recursive set of axioms, take the Craigian tran-
scription of the set of nominalistically-statable conscquences.)

Obviously, such ways of obtaining nominalistic theorics are of no =

interest. The way that I will suggest of obtaining nominalistic theories
is very different from this.
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In order initially to motivate the idea that an attractive nominalistic
formulation of physics is possible, lct us return to Hilbert’s axiom-
atization of gcometry. There arc two approaches to axiomatizing
geometry, sometimes called the metric approach and the synthetic
approach. In the metric approach we take as primitive a particular
function-symbol d, which we regard as denoting a particular mapping
of pairs of points of space into the real numbers. Then if we regard
the mathematical laws of rcal numbers, functions, and so forth as
independently given, we can use d to lay down a relatively simple set
of axioms for the geometry. The synthetic approach is the onc that
Hilbert followed, the one which does without real numbers, functions,
etc. This approach is also the one that Euclid had (less rigorously)
followed long before—Euclid had to follow the synthetic approach,
because the theory of real numbers hadn’t been sufficiently developed
in his day for the metric approach to be possible. (The real numbers
were in fact first introduced into mathematics as a means of simpli-
fying geometric reasoning). But to anyonc alrcady familiar with the
theory of real numbers, the metric approach is a good deal casicr, and
for that reason it is used in many recent books in geometry. If one were
familiar only with the mctric approach to Euclidcan gcometry, onc
would probably conclude that one needs to quantify over real numbers
in developing a theory of the gcometry of space. The Hilbert axiom-
atization, however, shows that this is not so.

My guecss is that the same is true for other physical theories. Insofar
as they've been rigorously formulated at all, they've been formulated
platonistically, for it is casier to formulate a theory that way when one
has a sufficiently developed mathematics. My guess, however, is that
a thorough foundational analysis of such theorics will show that ref-
erence to real numbers, cte. is no more necessary in them than it is in
geometry. And this isn’t a mere guess: 1 substantiate it in Chapters 6-8
with respect to one physical theory, viz. Newton's theory of gravi-
tation; and it wouid be routine to extend the nominalistic treatment of
gravitational theory to other theories with a similar format, such as
special relativistic clectromagnetic theory.
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I belicve that such ‘synthetic’ approaches to physical theory are
advantageous not merely because they are nominalistic, but also be-
cause they are in some ways morc illuminating than metric approaches:
they explain what is going on without appeal to extrancous, causally
irrclevant entitics. The attempt to climinate theoretical entitics of
physics (e.g. electrons) from explanations of obscrvable phenomena is
not likely to be possible without bizarre devices like Craigian tran-
scriptions; it is also not likely to be illuminating even if it is possible,
because electrons are causally relevant to the phenomena they are
invoked to explain. But even on the platonistic assumption that there
are numbers, no onc thinks that those numbers are causally relevant
to the physical phenomena: numbers are supposed to be casitics
existing somewhere outside of space-time, causally isolated from
everything we can obscrve. If, as at first blush appears to be the case,
we need to invoke some real numbers like 6.67 x 107 (the gravi-
tational constant in m*fkg~}/s2) in our cxplanation of why the
moon follows the path that it docs, it isn't because we think that that
real number plays a role as a canse of the moon’s moving that way;
it plays a very different role in the explanation than electrons play in
the explanation of the workings of clectric devices. The role it plays is
as an entity extrinsic to the process to be explained, an cntity related to
the process to be explained only by a function (a rather arbitrarily
choscn function at that). Surely then it would be illuminating if we
could show that a purcly intrinsic explanation of the process was
possible, an explanation that did not invoke functions to extrinsic
and causally irrclevant entities.

In saying that this i an advantage, 1 don't mean to suggest that
extrinsic explanation should always be avoided: the point is rather
that from a proper synthetic theory, one will be able to prove the
equivalence of the intrinsic and cxtrinsic explanations. (That is, one
will be able to prove that the two cxplanations are cquivalent given
the assumption that the entities involved in the extrinsic explanation
exist. If one believes that they don’t exist, then one will hold that the
extrinsic cxplanation is merely a uscful fiction, but one which can be
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used in good conscience by anyone who knows of the 'intrinsic
cxplanation, becausc of the conscrvativeness of mathcm:\t.lcs.) An
illustration of this is provided by synthetic geometry: given the
axioms of synthetic geometry, onc can prove (givefl standard math-
ematics) the cquivalence of on the one hand explanations of features of
physical space stated in terms of betweenness and congruence a.nd on
the other hand extrinsic explanations involving quantitative dnst:fncc
and angle measures; hence onc is free to usc the extrinsic explanations
in practice. - o
1 am saying then that not only is it much Jikelier that we can climinate
numbers from scicnce than electrons (since numbers, unlike cl'ectro.ns,
do not enter causally in explanations), but abo that it is haon¢ ilumin-
ating to do so. It is more illuminating because the climination of nut-
bers, unlike the climination of electrons, helps us to further a plausible
methodological principle: the principle that mzdcrlyhfg every goo.d
extrinsic explanation there is an intrinsic explanation. 1 this pn.ua'plc is
correct, then real numbers (unlike clectrons) have gor to be chmm-ablc
from physical explanations, and the only question is how precisely
this is to be donc. o
Note that the principle I've italicized is not a nominalistic principle:
it could perfectly well be accepted by a platonist, though of course,
not by any platonist who believed thar one could argue for platonism
by saying that mathematical entitics are needed for physx.cs. Converscly,
a nominalist need not accept the principle. There arc indecd ways of
trying to cstablish the possibility of nominalism that, even if succ.cssful,
would not establish the italicized principle. One such approach is that
of Charles Chihara in his book Ontology and the Vicious Circle I’n:nn',-)lc
I(scc note 4 abovc). Chihara’s approach is onc of thosc alluded to in th.c
introduction, on which onc trics to reinferpret mathcmatic.s: in this
case, one reinterprets it as being about linguistic entities instead of
abstract cntitics. I find my approach preferable to his for thrc.e reasons.
In the first place, as Chihara of course recognizes, thc. linguistic vncjav
requires that only predicative mathematical reasoning be ufcd in
application, and it isn’t at all obvious that we don’t need impredicative
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reasoning in doing science. (My view licenses (but docsn’t demand) the
usc of impredicative reasoning, as we shall sce in Chapter 9.) In the
second place, the linguistic entities that Chihara appeals to include
sentence types no token of which has even been uttecred, and it is not
at all obvious to me whether these should count as nominalistically
legitimate. But third and most fundamental, Chihara’s view does
nothing to illuminate the use of extrinsic, causally irrclevant entitics
in the application of mathematics. That is, Chihara’s methods do not
show us how to provide intrinsic explanations underlying extrinsic
explanations; they mercly show that linguistic surrogates of math-
ematical entitics can be used in place of mathematical entitics in our
extrinsic explanations (a fact which I take to be uninteresting, since as
I've argued, there is no need in the mathematical case to regard
extrinsic explanations as literally truc).

I conclude this chapter by noting that one of the things thar gives
plausibility to the idea that extrinsic explanations arc unsatisfactory if
taken as wltimate explanation is thar the functions invoked in many
extrinsic explanations arc so arbitrary. For example, in the case of
geometry, the choice of one distance function over any other onc
which differs from it by positive multiplicative constant is completcly
arbitrary; it reflects in effect an arbitrary choice of units for distance.
(When we move from geometry 1o physics generally, therc is in the
metric approach not only an arbitrary choice of 2 unit of distance, but
also an arbitrary choice of units for other qQuantities, an arbitrary
choice of a rest frame, and various other arbitrary choices as well).
Now an analogous arbitrariness conld exist on an intrinsic approach
too: it would exist il we singled out a particular pair of points of
space~time (say, the endpoints of a certain platinum rod in the Burcau
of Standards at such and such a time), and constantly referred to this
pair of points in making distance comparisons when we developed the
theory. Hilbert, however, did not resort to such an unaesthetic move
in his intrinsic development of geometry; nor shall I resort to it in my
intrinsic formulation of gravitational theory. What Hilbert did do
(in his uniqueness theorem) was to explain, in terms of intrinsic facts about
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space which arc statable without such arbitrary choices, why the choice of

finctions to be invoked in the extrinsic theory will be arbitrary to precisely

the extent that it is. This feature of the Hilbert approach to geometry is
highly attractive, and it is a feature I will take pains to emulate when
1 extend the synthetic treatment of geometry to a synthetic treatment

of gravitational theory.

!
!
i
!

6

A Nominalistic Treatment of Newtonian

Space- Time

I turn now to the problem of giving a nominalistic formulation of
physics, a formulation which mects the additional constraints imposed
in Chapter s: it is to be ‘attractive’, unlike Craigian axiomatizations;
it is to be a *purely intrinsic” formulation; and it is to be a formulation
that docs not appeal to arbitrarily chosen objects to serve as units of
length, or to arbitrarily choscn systems of coordinates, or to any such
thing. These further constraints are not very precise, but I hope that
they are reasonably clear; for 1 will implicitly and sometimes explicitly
invoke these constraints (especially the last onc) in motivating the
construction to follow.

The first step in giving a nominalistic formulation of physicsis to give
anominalistic treatment of space-time. I've already discussed a nominal-
istic treatment of space, but space-time is a little different, both in
Newtonian mechanics and in special relativity. It is different not just
in being 4-dimensional instead of 3-dimensional, but in not having a
full Euclidean structure. (Also in having some extra structure not
present in Euclidean 4-spacc.)

47
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in the Newtonian case, the lack of a full Euclidean structure comes
out in two ways. First, there is no ‘objective’ way to compare spatial
distance with temporal distance; that is, although onc could arbitrarily
define such a comparison (c.g. by saying that the spatial distance be-
tween two points was equal to the temporal distance if the temporal
distance was the same as was required for a certain uniformly moving
object in the Burcau of Standards to traversc that spatial distance),
nonetheless there is no onc such means of comparison that is naturally
singled out by the laws of Newtonian mechanics.

In order to exphin the second way in which space-time lacks full
Euclidean structure, I must digress to discuss the issue of absolute rest.
As I said in Chapter 4, I do not think that the noton of 16t makes
objective sense in Newtonian mechanics: it makes sense only relative
to an arbitrary choice of coordinate system. Newton himsclf disagreed
with this conclusion: he thought that the notion of absolute rest
(i.c. rest that isn't merely rest relative to 2 coordinate system) was
required in order to formulate the laws of mechanics, and conscquently
that it must make objective sense. In support of the idea that the con-
cept was needed to formulate the Jaws of mechanics Newton produced
his famous bucket argument: this argument makes a strong case for
the idea that you need a notion of absolute acceleration to formulate the
Jaws of mechanics, and Newton thought that the only way to explain
absolute acceleration was in terms of absolute velocity, so that that
must make objective sense too. (And if absolute velocity makes ob-
jective sensc, so of course does absolute rest: something is at absolute
rest if its absolute velocity is zero.) This is certainly a persuasive argu-
ment for the claim that talk of absolute rest mahes objective physical
sense. Nevertheless the conclusion of the argument is undeniably
embarrassing, for no onc of the unaccelerated frames is naturally
singled out as the rest frame by the laws of the theory.

How arc we to get around this cmbarrassing conclusion? Onc way of
course would be to change the physical theory, so that absolute
acceleration is not used: this was Mach’s program. But there is an
alternative move which does not {in any very significant sense anyway)

pam—
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change the physical theory, and that is to give a trecatment of absolute
acceleration which doesn’t take it as defined in terms of a numerical
velocity; chis allows us to have absolute acceleration without absolute
rest. A platonistic treatment of acceleration (using 4-dimensional
tensor methods) that accords with this idca is known, andis now pc; ul;r
with philosophers of physics. (Cf. for instance the papers by Eafman
and Friedman cited in the previous chapter.) In committing mysclf to
th.c avoidance of arbitrary choices, I committed mysclf to coming u
with a nominalistic trcatment with the same virtue, (As I will latcl:'
remark, 1 think that the nominalistic approach does even better than
the tensor approach in avoiding arbitrary choices.)

What docs all this have to do with the structure of space-time? | said
above that there is no ‘objective’ way to compare spatial distance with
temporal distance. We can now see that in Newtonian mechanics
there is not cven an ‘objective’ way to compare the spatial distance
between space~time points x and y with the spatial distance berween
z and w, except in the case where x is simultancous with yand z is
simultancous with w. To assume a more general comparison of
'spatial distance is to assumc a notion of sameness of place across time
i.c.a notion of absolute rest; and this notion makes no objective scnsc:
i Newtonian mechanics, (Again, sensc can be given to the notion of
rest, by arbitrary stipulation of a rest frame; but no onc rest frame is
naturally singled out by the laws of the theory.)

We've seen two respects in which space-time lacks full Euclidean
structure. We must bear these facts in mind in trying to give an
intrinsic treatment of the geometry of space-time: we must describe
space-time geometry intrinsically without attributing to space-time
any structure that isn’t objectively there.

It turns out to be quite casy to give an intrinsic account of the
geometry of space-time, both for Newtonian mechanics and for
special relativity, by building on an intrinsic treatment of affine
geometry that has been provided by Szczerba and Tarski®! Before
discussing this, let me first return to Hilbert's representation
and uniquencss theorems. Hilbert actually proved more general
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representation and unigueness theorems than. the ones stat.cd in C;hap-
ter 3: his theorems, in their full generality, invoke not d:s.tancc unc-
tions, but coordinate functions from which dilst:mcc functions can be
defined. The more general theorems are as follows:

(Rg) A structure {&, Bet,, Cong) (where Bet, € o % .sa!. ]I o
and Cong,, € & X & x & x &) is a model of the Hi er:
axioms if and only if there is a 1-1 function ¢ from &/ onto ®
(the set of ordered triples of real numbers) such that if we

define d,(x,y) for x,y in & as

JE 69— 46

i-1
(where ¢,(x) is the i'th component of the triple ¢(x)), then

() Vxyoly Bet, xzesdy(y) + dofy2) = dg(x2)]
(1) Vxyzwlxy Cong, zwerdyfxy) = dolzw)]

(Ug) Given any model of the axiom system .;md any two functf;ns
¢ and ¢’ whose domain is the domain of the modcl': if ¢
mects the conditions of the represcntation theorcn.l (i-e. of
(Rg)), then ¢’ mects thosc conditions if and onl.y if it haas fhc
form To ¢; where T is a Euclidean transformation of R . xc
a transformation that can be obtained by some con?bl.natton
of shift of origin, reflection, rotation of axcs, and muln;.)hc.anon
of all coordinates by a positive constant (and where © indicates

functional composition).

We can state the second result more bricfly by saying that the rcprcsc.n-
tation function guarantced by (R} is snigue up to Enclidean transformation
but no further. This result gives an explanation of the fact th:ft the laws
of Eu;lidcan geometry, when stated in terms of coordm.at?s, ‘are
invariant under shift of origin, rcflcction, rotation, and mulnpl.xcauon
of all distances by a constant factor: if we assume that the geniiine facts
about Euclidcan space are just the facts about betweenness am.i con}
gruence hid down in Hilbert’s axioms, and that the function ©!
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coordinates is simply to facilitate the deduction of facts about between-
ness and congruence and the relations definable in terms of them,
then it follows that in an extrinsic formulation of the laws of geo-
metry in terms of coordinates, the laws will be invariant up to
Euclidean transformations and no further.

What we would like is to do for space-time what has been done for
spacc. That is, we want to come up with a system of “intrinsic’ axioms,
more or less analogous to Hilbert's but involving somewhat different
concepts, and to come up with a representation theorem that cxplains
the legitimacy of coordinatizing space-time and a uniquencss theorem
that explains why in the coordinatized treatment of space-time the
laws of Newtonian mechanics will be invariant under just the coordinate
transformations that they are in fact invariant under. Anyone with the
least familiarity with Newtonian mechanics knows what the relevant
class of transformations is: it is the class of generalized Galilean trans-
Jormations, that is, the class of transformations that can be obtained by
some combination of?: (a) shift or origin; (b) reflection; (c) rotation of
spatial axes lcaving the temporal axis fixed; (d) multiplication of all
spatial coordinates by a positive constant; (c) multiplication of all
temporal coordinates by a positive constant; and (f) change of rest
frame according to the rule

’

=t X'=x+ut
Y=y =z

for some constant u. (Note the inclusion in this list of (d) and ().
The advantage I mentioned which my approach has over tensor
approaches is that thesc arc included among the transformations under
which the theory is invariant.*2) So our uniquencss theorem for space-
time is going to have to say that the representation function ¢ guaran-
teed by the representation theorem is unique up to gencralized Galilean
transformation and no further.

The key to developing a system of axioms from which one can
prove the needed representation and uniqueness theorems is to build on
theé results of Szczerba and Tarski on affine geometry. Szczerba and
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Tarski laid down an axiom system somewhat like Hilbert's,>® but
invoking only the notion of betweenncss. Their representation
theorem for 3-dimensional space was just like (Rg), but with clausc (b)
dropped since no notion of congruence was part of the system; to get
the rcpresentation theorem for 4-dimensional space you simply
replace R® by R* and use

\/ 1-2;1 (dilx) - ¢|(Y))z

as your definition of d,(x,y).** The uniqueness theorem for affine
space is like (Ug), except that in place of Euclidean transformations is
a morc gencral kind of transformation called affine transformations.
Affine transformations preserve straight lines, and parallclism among
lines, and the betweenness relation among points on a line, and the
congruence relation among points on the same line (or more generally,
the congruence or lack of congruence between x, y and z, w when x
and y lic on a linc parallcl to a linc containing z and w); they don’t
prescrve perpendicularity, or congruence generally.

Genceralized Galilean transformations are a special case of affine
transformations. That they preserve straight lines, and betweenness
on a line, and so forth, is obvious for purely spatial lines, i.c. lines all
of whose points arc simultancous. How about for lincs that arc not
purcly spatial? It is casy to sce that in the usual coordinatization, a
non-spatial straight line is simply the path of an inertial coordinate
system, and inertiality is preserved under generalized Galilean trans-
formations. The betweenness relation on such a straight line has the
obvious interpretation, and that rclation too is preserved under
gencralized Galilean transformations. Two non-spatial straight lines
are parallel if onc is at rest relative to the first, and if x and y arc on
one linc and z and w on a parallel line, then xy is congruent to zw if
and only if the temporal scparation between x and y is equal to that
between z and w; these relations too are preserved by generalized
Galilean transformations. So all gencralized Galilean transformations
arcaffine transformations;3* the converse is not true, so what we want to
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do is to add a few primitive notions and axioms to the Szczerba-Tarski
system, in such a way that we get representation and uniquencss
theorems corresponding to the more restricted class of transformations.

The primitives we need, besides betweenness, arc a 2-place simul-
tancity rclation and a 4-place spatial congruence relation, with the
property that xy S-Cong zw only if x"is simultancous to y and z is
simultaneous to w.*® Given that these are the primitives, it is clear
what our representation theorem is going to have to look like: it is
going to have to be the 4-dimensional variane of (R), except with
clause (b) dropped and the following two clauses added:

€ Yxyix Simul y 84(x) = $4(3)].
(d) Vxyzw[xy S-Cong zwe ¢, (x) = d4(y) A ¢.(z) =
Ba(w) A dyfx,y) = dy(z,w)].

And our uniquencss theorem is going to have 1o say that the represen-
tation function satisfying this representation theorem is unique up to
generalized Galilean transformations but no further. Given the
Szezerba-Tarski axiom on ‘Bet’, it is quite trivial®? to impase require-
ments on the two new primitives ‘Simul’ and ‘S-Cong’ 50 as to get the
desired representation and uniqueness theorems.

The position that we arrive at, then, is that the only spatio-temporal
rclations nceded to describe Newtonian space-time are the three
invoked in this axiom system: all other genuine spatio-temporal
rclations are defined in terms of them, and relations which on a co-
ordinate description of space-time might look genuine—c.g. being at
absolute rest, or having a temporal scparation of exactly 1, and so
forth—really are not genuine but dependent on an arbitrary choice of
coordinatc system or distance function. By the representation theorem,
the coordinate system and the distance function can be viewed as
mercly devices for deriving  conclusions about  spatio-temporal
hetweenness, simultancity, and spatial congruence, conclusions which
could be derived without cver bringing in numbers at all.

Of course, the conclusions arrived at so far are rather limited: they
show the possibility of a nominalistic account of the structure of
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spacc-time, but they do not show that when we usc space-time to
develop broader theories (e.g. theories that describe the motion of par-
ticles by differential cquations, theories that postulate scalar ficlds
governed by other differcntial cquations, and so forth), a nominalistic
account of thosc broader theorics is possible too. Nevertheless, I think
that this more general conclusion is correct; and I will arguc for it in
the next two chapters, by building on the ideas developed so far.

7

A Nominalistic Treatment of Quantities, and a
Preview of a Nominalistic. Treatment of the

Laws involuing them

I have described a nominalistic treatment of space~time; next we have
to deal with cntities that exist within space-time, ¢.g. various scalar
fields such as temperature or gravitational potential. A possible approach
to a coordinatc-indcpendent treatment of, say, tempcrature, would be
to introduce a continuum of temperature propertics, each onc the
property of having such and such specific temperature. One could
then describe the structure of that system of propertics not via numbers,
but via certain intrinsic relations among them, say the relations of
betweenness and congruence; and one could impose axioms on these
notions to guarantee that there was a 1-1 function mapping the
temperature propertics into the reals, and that such a function was
unique up to lincar transformation. There is a certain conception of
propertics (viz. Putnam’s in ‘On propertics’®) on which this approach
would be at least arguably a nominalistic one; but 1 prefer a different
strategy, which doesn’tinvoke temperature propertics but which makes
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do with space-time points (or more generally, space-time regions) as
the only entities.

My approach is not to introduce betwecnness and congruence
relations among temperature propertics, but to introduce temperature-
betweenness and temperature-congruence rclations among space-time
points. That is, we will have a 3-place relation Temp-Bet, with
y Temp-Bet xz meaning intuitivcly that y is a space-time point at
which the temperature is (inclusively) between the temperatures of
points x and z; and a 4-place relation Temp-Cong, with xy Temp-
Cong zw meaning intuitively that the temperature difference between
points x and y is equal in absolute value to the temperature difference
between points z and w. Also, if we are going to want to formulate
laws which in their extrinsic formulations arc not invariant under
temperature reversal (i.c. under a systematic replacement of low
temperatures by high temperatures and conversely), we will need a
2-place predicate Temp-Less, where x Temp-Less y means that the
point x is Jower than or cqual in temperature to point y. (When
Temp-Less is used, Temp-Bet of coursc becomes definable; but in
order to make most of the formal devclopment independent of
whether the laws arc invariant under reversal, it is convenient in the
exposition that follows to keep Temp-Bet as a primitive in cither case.)

We now want to imposc axioms on these relations, which will give
us representation and uniquencess theorems more or less analogous to
the Hilbert theorems (Rg) and (Ug) of the previous chapter. The
thcorems we want are

(Ryemp) A structure (&, Temp-Bet,, Temp-Cong,) or (&,

Temp-Bet,, ‘Temp-Cong,, Temp-Less ) is a model of
the axioms if and only if there is a function ¢ from o onto
an interval (connccted subsct with more than one clement)
of real numbers, such that
(@) Vx,y.z]y Temp-Bet,, xze cither ¢(x) < ¢i(y) < ¥(2)
or Y(2) < Y(y) < ¥ ()]
(b) Vx.y.z,w.|xy Temp-Cong_, zws|i(x) — ¢(y)|=
|¥(2) — p(w)[l.
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and if Temp-Less is used as a primitive,
() Vxy[x Temp-Less y e y(x) < ¢(y))-

(Uremp) Given any model of the axiom system and any two
functions ¢ and ¢’ whose domain is the domain of the
model: if ¥ meets the conditions of (Ry,,,,), then ¢’ meets
thosc conditions if and only if it has the form Tey; where
if Temp-Less is not used as a primitive, T is a lincar trans-
formation of the reals, i.c. a function of form ax+b
where b is a real and a is a non-zero real; and where if
Temp-Less is uscd as a primitive, T is a positive lincar
transformation, i.c. a imncar transtormation in which the
constant a is greater than zcro.

Note that unlike the case of Euclidean geometry or the geometry of
space~time, we don’t demand that the representation functions be 1-1,
for the obvious rcason that different space-time points may have the
same temperature, Also, we don’t demand that the representation
function be the entire st of reals. We do demand that it be a connccted
sct of reals, for a simple reason: temperature and other scalar fields used
in physics arc assumed to be continuous, and this guarantees that if
point x has temperature Y{x) and point z has temperature (z) and r is
a real number between ¢(x) and ¢(z), then there will be a point y
spatio-temporally between x and z such that y(y)=r. I have also
demanded that the range of ¢ contain more than one real number,
simply because doing so avoids the need to worry about tedious
special caree in stating definitions Jater on, and because the case of a
scalar with only one value is of no interest.

The task of getting an axiom system for Temp-Bet and Temp-Cong
and perhaps Temp-Less that will give risc to the desired representation
and uniquencss theorems is a problem that has in essence been solved
by others. There is in fact a large body of known results about how to
axiomatize something so as to get desired representation and unique-
ness theorems: these results form the major part of what is known as
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‘the theory of measurement’. This name reflects a philosophical bias
quite different from mine: it reflects a concern with something like
operational definitions, rather than with axiomatizing scicnce without
the usc of numbers. But ‘measurement theory’ has progressed largely
by ignoring characteristic features of measurement (such as measure-
ment errors) and focussing on such questions as: what must the intrinsic
facts about temperature differences between physical objects be if it is
appropriate to think of temperature as being represented by real
numbers? And except for the fact that I am substituting space-time
points for physical objects, this is in effect the question I am now
asking.

An excellent survey of the kind of results now available in modern
measurcment theory is given in Krantz, Luce, Suppes, and Tversky,
Foundations of Measurement, vol. 1.>° Many of the topics in that book
are of some relevance to the project of nominalizing physics; of
immediate interest is the treatment they give of ‘absolute difference
structures’ in their Section 4.10. For their system is, in cffect, an axiom
system involving betwecenness and congruence®® which gives some-
thing very closc to the representation and uniqueness theorems for
scalar ficlds like temperature that were required above. It is quite casy®!
to modify their system 5o as to give the representation and uniqueness
theorems we want, when Temp-Less is not used as a primitivc. And
when Temp-Less is used as an additional primitive, it is easy*? to add
to the Krantz axioms some new axioms relating this to the other
primitives 5o as to again get the representation and uniquencss theorem
we want; in fact an carlier section of the Krantz book, on ‘algebraic
difference structurcs’, shows in effect how this is to be done. For furure
reference it will be convenicent to have names for the axiom systems
that arise by modifying the Krantz axioms in these ways: I'll call them
the axiom ‘systems for unordered scalar ficlds and for ordered scalar
ficlds.

Of course, nothing in all this turns on the scalar in question being
temperature, rather than gravitational potential or some other scalar.
In the future then, I will write ‘Scal-Bet’, ‘Scal-Cong’, ctc. for the
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predicates, to emphasize that we're dealing with an arbitrary scalar.
(In an actual physical theory one might of course have more than onc
scalar; so there will be different familics of betweenness and congruence
predicates, onc for cach such scalar. This could be indicated in the

notation by a subscription the prefix ‘Scal’, but I won’t bother to do

s0.) In order to distinguish our spatio-t¢mporal betweenness predicate
from the scalar-betweenness predicate(s), I'll write the former as st-Bet.

If we now introduce a joint axiom system JAS that includes the
spatio-temporal primitives and the tempcerature (or other scalar)

primitives together, both dcfined on the same domain (which we

think of as the sct of spacc-time points), and if we impose the appro-

priatc axioms for cach, then for any modd! of the combined system

there is both a 1-1 spatio-temporal function ¢ onto R* and 2 scalar-

representation function f onto an interval, cach function unique up
to (but only up to) the appropriate class of transformations. Now,
physical laws governing a scalar like temperature or gravitational
potential arc often expressed as laws about a scalar function T mapping
quadruples of rcal numbers into real numbers (the quadruples of reals
in the domain representing space-time location and the numbers in
the range representing temperatures or gravitational potentials or
whatever). It should be clear that such a function T is precisely g ¢ ™"
(scc Figurc 2). This suggests that laws abowt T (c.g. that it obeys such and

R‘
T = oo™
(/ ,"“"—_~*\7“ R
¢ [
Space-time
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such a differcntial equation) could be restated as laws about the interrelation of
¢ and ; and since ¢ and \p arc gencrated by the basic predicates Scal-Bet,
Scal-Cong, st-Bet, Simul, S-Cong, and perhaps Scal-Less, it is natural to
suppose that the laws about T could be further restated in terms of these
latter predicates alone. Of course, we can’t hope to express all properties
of T in terms of these five (or six) predicates: only those features of T
that are invariant under both generalized Galilcan transformations of
the spatio-temporal coordinates and under lincar (or positive lincar)
transformations of the temperature scale could ever be so expressed.
But that’s alright, for it is only such invariant propertics of T that are
of any physical importance anyway. What we must hope, then, is
that given some law (e.g. a differential equation) involving T, we can
find some nominalistic formulation involving our five {or six) basic
predicates that gives the full invariant content of the law.%3

In the next chapter I will show that in many cases—and, T suspect,
in all—it is indced possible to do this. This will be the key to nominaliz-
ing Newton's theory of gravitation.

8

Newtonian Gravitational Theory Nominalized

A. Centinuity

I will begin the jllustration of the ideas of the paragraph before last by
a simpler example than a differential cquation. Suppose we want to
say nominalistically that the scalar function T is a continuous function.
In ‘saying this nominalistically’, we are not allowed to talk about T at
all: T, after all, is a function, and hence not a nominalistically ad-
missible entity. The sentence CONT which we will use to ‘say that
T is continuous’ will in fact quantify only over space-time points and
space-time regions, and will usc only the basic predicates listed in the
next to last paragraph of the preceding chapter. We will prove

(1) For any model of the joint axiom system JAS for spacc-time
and the scalar quantity in question, and any represcntation
functions ¢ and ¢ (for space-time and the scalar quantity,
respectively), the new claim CONT is true in the modcl if and
only if T (i.c. yo¢~?) is a continuous function.

This in effect will extend our representation theorem to the larger
axiom system that includes the new continuity clhim CONT. The

61
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of T in terms of these five (or six) predicates: only those features of T
that are invariant under both generalized Galilcan transformations of
the spatio-temporal coordinates and under lincar (or positive lincar)
transformations of the temperature scale could ever be so expressed.
But that’s alright, for it is only such invariant propertics of T that are
of any physical importance anyway. What we must hope, then, is
that given some law (e.g. a differential equation) involving T, we can
find some nominalistic formulation involving our five {or six) basic
predicates that gives the full invariant content of the law.%3

In the next chapter I will show that in many cases—and, T suspect,
in all—it is indced possible to do this. This will be the key to nominaliz-
ing Newton's theory of gravitation.

8

Newtonian Gravitational Theory Nominalized

A. Centinuity

I will begin the jllustration of the ideas of the paragraph before last by
a simpler example than a differential cquation. Suppose we want to
say nominalistically that the scalar function T is a continuous function.
In ‘saying this nominalistically’, we are not allowed to talk about T at
all: T, after all, is a function, and hence not a nominalistically ad-
missible entity. The sentence CONT which we will use to ‘say that
T is continuous’ will in fact quantify only over space-time points and
space-time regions, and will usc only the basic predicates listed in the
next to last paragraph of the preceding chapter. We will prove

(1) For any model of the joint axiom system JAS for spacc-time
and the scalar quantity in question, and any represcntation
functions ¢ and ¢ (for space-time and the scalar quantity,
respectively), the new claim CONT is true in the modcl if and
only if T (i.c. yo¢~?) is a continuous function.

This in effect will extend our representation theorem to the larger
axiom system that includes the new continuity clhim CONT. The
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uniqueness thecorem will extend automatically, since the ncw con-
tinuity axiom will involve only the basic predicates used in the original
axiom system.

Such a nominalistic continuity axiom is easy enough to find. (The
following formulation of it quantifies over space-time regions.
A formulation quantifying over space-time points only is possible too,
but I will not bother to give it since regions appear to be needed later
on anyway, and since as already remarked there doesn’t seem to be
much point in denying the existence of regions while admitting the

existence of points.) First a preliminary definition: define x =y as
Scal

x Scal-Bet yy; intuitively it means that x and y have the same temp-
erature, or the same gravitational potential, or the same value of
whatever scalar quantity is in question. Now call a region R scalar-basic
(or temperaturc-basic or gravitational-potential-basic, when we want
to distinguish the scalar in question from other scalars that will occur
in the theory) if and only if there are distinct points x and y such that
either

| (a) R contains preciscly those points z such that z Scal-Bet xy and

not (z & x) and not (z = y) (cf. Figure 3(a)); or
Scal Scal
(b) R contains preciscly those points z such that y Scal-Bet xz and

not (z = y) (cf. Figure 3(b)).
Scal

L G . o7
X R y X y R
FIGURE 32 FiGuRE 3b

In terms of a rcpresentation function ¢ for temperature, then, R is
temperature-basic if and only if cither it consists of all points whose
temperature is exclusively between @(x) and $(y), or it consists of all
points whose temperature is greater than y(y), or it consists of all
points whose temperature is less than y(y). (So the temperature-basic
regions will correspond to the scts of space~time points that are
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¥ ~'-images of basic open sets in the usual topology of the interval
that is the range of y.** This correspondence will hold for any such
representation function ¥.) We can similarly, using the notion of

st-Bet, characterize the regions of space-time that are spatio-temporally -

basic, i.e. that are mapped onto basic open sets of B* (say, interiors of
tetrahedrons in ®*) by any spatio-temporal representation function ¢.
We then ‘say that T (i.c. Yo ~') is continuous at ¢(x)’ by saying that
for any tempceraturc-basic region that contains x, there is a spatio-
temporally basic subregion that contains x; and we ‘say that T is
continuous’ by saying that this holds for every space-time point x.4%
This claim CONT ‘says that T is continuous’ in the sense that for the
claim, (1) holds. But in ‘saying that T is continuous’ we haven't
mentioned any specific T {or any specific ¢ or ¢): doing that would
not only violate nominalism, it would also involve a particular choice
of coordinate system for spacc-time and a particular choice of scale for
temperature. Nor have we ‘quantificd over arbitrary choices’, i.c.
talked about all functions T that would result by making arbitrary
choices of coordinate system and of scale in one or another way.
Rather, we have specified the continuity of temperature with respect
to space-time in a completely intrinsic way, a way that never mentions
spatio-temporal coordinates or temperature scales. In my view this
fully intrinsic character of the method makes it very attractive even
independently of nominalistic scruples.

The final thing to note about the treatment of the continuity of T
is that we made usc only of the affine properties of space-time, i.e. of
the properties that depend only on the betweenness relation and not
on the simultancity or spatial congruence relations. In most of the
mathematical development to follow—c.g. in the nominalistic treatment
of differentiation—the same will be true. This is important, for
it will mean that these developments can be carried over without any
change at all to physical theories that do not postulate a Newtonian
spacc—time but postulate some other space-time with a (flat, globally
R%) affine structure instead; c.g., these developments will go over
without alteration to the special theory of relativity. [Some of the other
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mathematical developments which do involve aspects of Newtonian
space-time other than its affine properties—e.g. the treatment of
gradients and Laplacians—will also go over to special relativity with
very little change; and I believe that without too much trouble all the
mathematical developments to follow could be generalized to space-
time with a more general sort of affine structure than considered here
(i.c. space-times which don’t obey all the Szczerba-Tarski axioms and

indeed which require 2 more complicated set of primitives), such as ..

the space-time of general relativity. See the last paragraph of note 50J.
Analogously, the above treatment of continuity does not rely on the
primitive ‘Scal-Less’, and again we will do without that predicate in
our mathematical devclopment, for the sake of generality, whenever
possible.*¢

B. Products and Ratios

Before dealing with differentiation proper, we must deal with the
comparison of products or ratios. For instance, suppose we want to
say nominalistically that the result of multiplying a cerwin pair of
intervals is less than the result of multiplying a certain other pair of
intervals. Obviously there is no hope of saying this nominalistically

unless certain conditions on units are met. For instance, there is no -
hope of saying nominalistically that the result of multiplying two _

spatio-temporal intervals is less than the result of multiplying two
temperature intervals, for the truth of such a statement would depend
on the choice of a temperature scale and of spatio-temporal coordinates,
and in a nominalistic treatment (of the sort being proposed here) only
invariant statements are possible. What we can hope to say is that the
result of multiplying one spatio-temporal interval with one temperature
interval is less than the result of multiplying another spatio-temporal
interval with another temperature interval. At least, we can hope to
say this if the two spatio-temporal intervals are themselves objectively
comparable; and they will be (in any affine space) when both lic on the
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same straight line.*” What we want then is a nominalistic statement
with eight free variables, which we may abbreviate suggestively as

@ [xix2¥1¥a| <asealtsuaviva,
such that for any choice of a spatio-temporal representation function
¢ and a scalar represcntation function ¥, we can prove the biconditional

(3) [x1%2¥1Y2] <sr.seattyuavy Vol x40%,5,0,, and u, lie on a single
line and dy(x 1, x,)|¥(y) — ¥(y2)| < deluru)|P(vy) — ¥(va)l.

Here d is the spatio-temporal distance function

\/Zl‘:ﬂ (dulx,) - ¢‘(x,))’.

Note that although dy, is highly nop-invariant under affine trans-
formations of the spatio-temporal coordinatc system, the right-hand
side of (3) in which it appears is invariant under affine transformations;
so this is one of thosc cases where we ought to expect that we won’t
nced non-affinc-invariant notions in the definition of (2) {i.c., wec ought
to expect that we not only won't need to use ‘d,’ in the definition of
(2), we won't need ‘Simul’ or ‘S-Cong’ cither). Similarly, since the
right-hand side of (3) is invariant under all linear transformations of
the Y-scale (not just the positive linear transformations), this is one of
those cases where we should hope to do without use of the predicate
‘Scal-Less’ in the definition. So we want to be able to give a nominalistic
definition of (2) that meets these additional constraints, and such that
the biconditional (3) is provable. This task is casily carried out, if we
allow oursclves sufficient logical machinery. First we definc a spatio-
temporally cqually spaced region (sec Figure 4) as a region R all of whose
points lic on a single line, and such that for every point x of R which
lies strictly st-between two points of R, there are points y and z of R
such that

(a) exactly one point of R is strictly st-between y and z, and this
point is x; and

(b) xyP-Cong xz.

(P-congrucncc, i.c. congruence along parallel lines, is defined in note 36).
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FiGURE 4

My definition allows cqually spaced regions to be infinite as well as
finite; however, it is rcally only the finite ones we need.

The notion of a region equally spaced in temperature is analogous,
except that st-betweenness is replaced throughout by temperature-
betweenness and P-congruence by temperature-congruence. (The
requircment that 2l points of the region lic on a singlc line can be
dropped; for the claim that results from this when temperature-
betweenness is substituted for st-betweenness in the definition of lying
on a single linc is vacuous, since the temperaturc-ordering is 1-
dimensional). Given this, we can define (2) as follows (sce Figure s):

(4) u, # v, and v, & v, and {if X, # X, and y, & y,, then

Scal Scal
3R, 3R, ,[R,, is an st-cqually-spaced region and Rg, is 2

scalar-cqually-spaced region; x, and x, arc in R,, and y, and
y2 are in Rg,,;; there arc a,b in R, such that u, and u, are st-
between a and b, and there are ¢,d in Rg,,, such that v, and v,
are Scal-between ¢ and d; there are just as many points of R
that are st-between x, and x, as there arc points of Rg,, that
are scal-between v, and v, ; and there are fewer points of Rgea
that are Scal-between y; and y, than there arc points of R,
that are st-between v, and u,]}.

All the notions in this dcfinition arc affine-invariant, and if we define

48

(2) by (4) then it is routinc*® to prove the required representation

theorem (3). (The question may be raised whether our definition (4)

1?2
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FIGURE §

is genuincly nominalistic, duc to the cardinality comparisons that
occur in it; I defer this issue until Chapter 9.)

We also nced Jati 3

. to define a relation [%1%2y,y,| > pseat|d3 82V V|
with a representation theorem like (3) but with ‘<’ replaced by ‘>’
but obviously this can be iven |
: foy y ' donc ar.lalogously. And given ‘<, ¢, and
>a,seals T scar €an be defined in terms of them in the obvious way.

Finally, I notc for later use that the definition of one product being
less than (or greater than, etc) another can be straightforwardly
generalized to the case where the products are of more than two factors.

For instance, we can define by means quite analogous to (4) a formula

[4
(2 ) l’*:xz)'l)’ﬂ:zz' <n,n,sml“x“z"nVz“'r“'z'.
for which we can prove that for any representation functions ¢ and
for space~time and our scalar respectively, the bi-conditional

’ . - :
(') [xi%2y1y22,2, <umsen|VU305v, VoW, W, if and only if x,,
X3, uy, and u; all lic on a line, and Y1s Y2, vy, and v, all lic on
(the same or another) line, and

d¢("uxz)d&()'h}/'z)w/(zl) - 4’(22)|
< dé(“l-uZ)dé(vl'vl)l'/’(“'l) - 'f’(wz)l

always holds.+®
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for which we can prove a representation theorem that says that (6) holds
if and only if the points x,, X3, 5, 5;, u, and u, all lie on a single line L,
and for any representation functions ¢ and y and any coordinatization
¢ of L compatible with ¢, (s) holds.

To define (6) it is uscful to first definc two other notions: first,
x1X3 Pos-Par u,u,, meaning intuitively that the line-segment from
X, to X, is parallel to and peinting in’ the same direction as the line-
segment from u, to u, (with x, # x; and u; # u,); second, y,y, Pos-
Oricnt v v,, meaning intuitively that ¥ (y,) — ¥{y,) and ¢ (v,) — ¢lv,)

C. Signed Products and Ratios

So far we've been talking of products of absolute values, but 2 more

general kind of product comparison is also uscful (even when we are
dealing with unordered scalar ficlds). Platonistically, these new product
comparisons are most casily made if we introduce a ncw kind of
representation function. Suppose we are talking about points on a
. single line L. Our old coordinatization ¢ of space assigns points of R*

i ff

K to points of L; let’s introduce 3 n}ciw co‘o rc]man.zl.:It on ";‘; :]h ato?:f:: arc non-zero and have the same sign. Both these relations are easy to
) i 1 1 [P ’
|tn mfl numbers to points of L, and rat s compat Lc e e W= - define nominalistically (and we don't need ‘Scal-Less’ to define the
] ¢ in the same sense that for any potnts x andyonl, |¢1-(’:)__ ¢ y? . latter). Given these relations, onc can define an cight-place relation
v dy(x,y). The choice of such a ¢ is to some c.xtcm‘ am.ztrary: it is 12y 2 Same-Sign u,uyv v, as:
. arbitrary which point of L is assigned o, and which direction along L . '
- is the direction of increasing ¢, values. So our only interest in relations Either x,x, Pos-Par u,u, and y,y, Pos-Oricnt v,v,, or
: expressed using ¢, is in thosc relations that do not depend on these x;X, Pos-Par uu; and y,y, Pos-Oricnt v,v,.
arbitrary choices (in addition to not depending on the arbitrary choice In the case when x,, x,, u;, and u, lic on a single line L, this relation
. of a particular ¢ or ). One such relation is the following: will hold if and only if (¢ (x5) — o (x,)) (W(y2) — ¥(y,)) and (@, (u,) —
: . ¢ (1)) (¥(v;) — ¥(v,)) are non-zero and have the same sign. We also
- ¢ — Uiy
: (). (dz,_(x:) . ‘ﬁlL(Il» (W(ya) = ¥ya)) define  x,x,y,y, Opp-Sign u,u,v,v, as  x;x,y,y, Same-Sign
:l . 18 exclusively between u,u,v,v,. Onc can now define (6) in terms of the simpler kind of

(Puls2) = Suls))) (W(r2) — ¥ (1))

and

($(v2) — (1)) (W (v2) — ¥(vy))-

Here vie are expressing not a comparison of products of absolute values
of spatio-temporal intervals and scalar intervals, but a comparison of
signed products of oricnted spatio-temporal intervals and oriented
scalar intervals. It is however a comparison that is invariant under
choice of the orientations of ¢ and of ¢,. What we now have to do is
express this comparison nominalistically and without cver intro-
ducing arbitrary oricntations.

More preciscly, then, what we want to do is to nominalistically

define a predicate

(6) (xix27,72) E-Bet, scar (sy52t1t) (uyuzv,v))

product comparison in the preceding scction, as follows:

Xy, X3, Uy, Uy, 5y, and s, all lic on a single line; and if x, =x, or
¥; & ya then s;s;t ¢, Opp-Sign uju,v,vy; and if x; # x, and
Scal

y1 s ¥y, then onc of the following three conditions holds:
Scal

(a) sisatyty Same-Sign x;%py,y, and  uu,t,t, Same-Sign
X;X;y,y; and cither Isnsz‘ﬁzl <s1,8¢eanl I-“xxz}'ﬂ'z' <s1,Seal
I"xuz":"zl or ,uxuz"x"zl <u.sm|xx’\'2)'l}'z| <u.sm,5152t|t2|;

(b) sysptyr, Same-Sign x,x%,y,y; and not (u;u,t;t, Same-
Sign x,x,y,y,) and |x,x2y,y:| <s1,8cal ,s,s:t,tzl;

() mot (s,s,t,t, Same-Sign x,;X,y,y,) and u,u,t,¢t, Same-Sign
X;X2Y,¥2 and ,xlxz)'x)'zl <et,Scal l“l“:"l"zl-
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The desired representation thecorem connecting (6) so defined with (s)
is now easily provable.

(6) shows how to define one signed product being between two
others. One can similarly define what it is for one signed product to
equal another signed product. Finally, onc can extend this result to

signed products of three or more factors: e.g. in analogy to (2) and

(3") at the very end of the previous section, we can define a formula

(xxxz)'x)'zznzz) =u.sl.5cnl(u x“z"nvzwxwz)

which holds if and only if x,, x5, u,, and u, are all on a line L, and
Y1 Y2, V3, and v, are all on a line L', and

(dolxa) — ¢!_(x,)) ($r(y2) - $u-(v1)) (W(z2) - ¥(2,))
=(PL(uz) = do(vy)) (Dr(v2) = S v, )) (Y{w,) — Y(w,)).

D. Derivatives

Now that such product comparisons are at hand, we can deal with the -

differentiability properties of our scalar function T (=y°¢?).
Suppose for instance that we want to say something about the existence
of the partial derivatives of T at a given point, and the values of these
partial derivatives there. We can’t actually say that the partial derivatives
have certain values, for this is not an invariant statement: it depend
on the dircctions of the spatial and temporal axes, and the scale units
for spacc, time, and temperature. So the first step is to find a way of
stating the invariant content of the claim that the partial derivatives
have such and such values. The secret is to ask not about the ralues of
the partial derivatives, but for comparisons of the directional derivatives
with the tempcrature intervals. That is, the statement

(7) the dircctional derivative of T(=ye ¢ ') with respect to the
vector $(a,) — ¢(a,) exists at $(x) and has a valuc there equal

to Y(b,) - ¥(b,)
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is invariant under generalized Galilean (in fact, affinc) transformations
of ¢ and under lincar transformations of , so it is suitable as the right-
hand side of a representation theorem; let us then try to ‘say it nominal-
istically’, i.c. find a statement that can be left-hand side of the
representation theorem.

There is one rather annoying complication in giving 2 ‘nominalistic
definition’ of (7), and that is that we may have inconveniently chosen a
point b, which has cither the highest or the lowest temperature of any
point in the universe. So that we can save this complication for the
end, let (7*) be the conjunction of (7) with the assertion that 3c3d
(b, is strictly Scal-between ¢ and d); we first give a ‘nominalistic
definition’ of (7*), and then show how it can be used to obiain a
‘nominalistic definition’ of (7). .

The idea of the nominalistic definition of (7*) is as follows. Take any
two points ¢ and d, on opposite sides of b, but as close to b, as one
likes. Then (7*) says that there should be points y and z on opposite
sides of x on a linc L through x that is parallel to the linc through a,
and a,, such that if you choose rcpresentation functions ¢ and  and a
coordinate function ¢, for L that is compatible with ¢, then for all
points t on L other than x that arc between y and 2,

¥(t) - ¥(x)
$o(t) — Pu(x)
is exclusively between ¢(c) — ¢(b,) and ¢(d) — ¥(b,), i.c. is within 2
small amount of Y(b,) — (b, ). Thisis clearly what the usual platonistic
explanation of (7*) amounts to.

(¢'L(3z) ~ ¢(ay)

Putting this more formaily, and inscrting both a clause to cover the
casc where a, =a, (which was implicitly excluded in giving the
intuitive idca) and a clausc asserting our temporary assumption about
the non-extremality of b,, we get

(8*) 3cad (b, is strictly Scal-between ¢ and d), and if 3, = a, then

by & by,andif a, # a, then:
Scal
YcVd (if b, is strictly Scal-between ¢ and d then there are
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points y and z such that yz Par a,a, and x is strictly st-
between y and z, and for all points t other than x that are
strictly st-between y and z, (aja;xt) E-Bet,, s, (xtb,c)
(xtbd).

(yz Par a;a, means that the line segment yz is parallel to 2,3, with
y # zand a, # a,. ltis defined in terms of st-Bet in note 36). The pre-
vious paragraph should make it clear that (8*) is an adequate nominal-
istic definition of (7*): that i, it should be clear that it is platonistically
provable that for any model of the joint axiom system and any
representation functions ¢ and ¢, (8*) holds in the model if and only
if (7*) is true.

What then are we to do if we want 1o nominaiistically define not
(7*) but (7)? One possibility is to recall that by cutting the size of a
vector in half you cut the directional derivative with respect to that
vector in half, so that if a, is on the line from a, to a, and halfway
between them, and if b, is midway in temperature between b, and b,,
then the directional derivative with respect to @(a,) — pla,) will
equal Y(b,) — ¢(b,) if and only if the dircctional derivative with
respect to ¢a;) — dfa,) cquals ¥(b,) — y¥(b,). And what follows the
‘if and only if” is explicated nominalistically by (8*), for the point b,
is guaranteed to be strictly Scal-between two other points, namely

b, and b,. At least, this is guarantced when b, & b,; taking account
Scal
of the possibility that b, & b, as well, the above remarks give us the
Scal
nominalistic definition of (7):

(8) Either b, = b, and 3b{(8*) with b, and b, replaced by b}, or
Scal

b, 4z b, and 3a,3b,|a, st-Bet a;a, and a;ay P-Cong aja,
Scal
and b,b; Scal-Cong b;b, and {(8*) with b, replaced by b,}].
(P-Cong is dcfined in note 36.) This is an adequate nominalistic
definition of (7). Let us abbreviate it as D(x, a;, a5, by, b,).
The reader may object that a nominalistic definition of (7) isn't
enough: for since the range of our scalar may not cxhaust the real
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numbers, it may happen that the directional derivative of T with
respect to ¢(az) — @(a,) exists at ¢(x) but is too big to be represcnted
in the form Y(b,) — y/(b,). Actually, however, this causcs no problem.
For the dircetional derivative with respect to a vector cxists at a point
if and only if the directional derivative’ with respect to a shortened
vector pointing in the same direction. exists at that point; and by
shortening sufficiently much, we can always get the value of the
directional derivative to be as small as some actual temperature-
difference. So, to say that the directional derivative with respect to
#(a2) — ¢(a,) exists at ¢(x), we necd merely say that Ba'ﬁcad[a'z st-Bet
a2 and (if a, # a, then a, # a,) and D(x,a,,23,¢,d)]. This doesn’t en-
able us to equate the value of the directional derivative with respect 1o
®(a;) — #(a,) to any actual temperature difference, but we never need
to do that: we can always make do with stating the value of the
directional derivative with respect to some smaller parallel vector,
#la;) — ¢(a,), since cutting the size of the vector by some fraction
always cuts the size of the directional derivative by the same fraction.
We can not only express the existence of the partial derivatives of
T at a point ¢(x), but we can also express the differentiability of T at
¢(x) (i.c. the existence of a linear transformation that approximates T
at ¢(x)): the intuitive idea is that T is differentiable at ¢(x) if and only if

(a) for each a, and a,, the dircctional derivative of T with respect
to ¢(a,) — Pla,) exists at $(x);

(b) for cach a,, a,, a,, a, that form a parallelogram with a,
opposite a,, and such that a,, a,, and a, are all close enough to
a, so that the values of the directional derivatives of T with
respect 1o §(az) = ¢a,)s $as) — o), and $la) — bla,) are
all within the range of the temperature scale: the directional
derivative with respect to ¢as) — @fa,) is the sum of the
directional derivatives with respect to @(a,) — ¢(a,) and

$lag) - ‘/’(31)-

It should be clear how to express this nominalistically given what has
already been said.

LA W Py T
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¥ E. Second (and Higher) Derivatives derivativeatx
N derivative at y
: o . ce s
Second derivatives of scalar fields arc also no difficulty: we merely be .
need to express the result of taking a first derivative, by means of i
: ; derivative Result of subtracting
3 betweenness and congruence predicates, and apply the whole process at w ‘ .ger!vat‘lve at x from g
. . . . . ’ erivative at y 1s equ
again. (And we can reiterate still further to get third and higher N in ngOIP‘e Xah‘m 10 result of
- . . .| subtracting denivative
derivatives). “More specifically, suppose we define D-Bet(a;,az; derivative 2 rom Bt
X,y,z) as: atz atw .
.‘ 4 ’ ’ ’ d. :
t 3a3,b,c,d,e[a; st-Bet 2,2, A (3, # 2, > a; # 3,) A D(x,31,32,b,¢) A : g
: D(y,al,a'z,b.d) A D(z,a,,a'z,b,c) A ¢ Scal-Bet de); (All derivatives are drrecuon.::l den_vam:es with g
3 . respect to a vector a,a,” which points in the !
v . . . . / direction of ;a3 but may be shorter) :
this says that the dircctional derivative of T with respeet to ¢la,) - . ) ¢
3, #(a,) at ¢(x) is between the directional derivatives with respect to the IGURE !
v . 3 0
N same vector at ¢(y) and ¢(z). (az is invoked to avoid the difficulties .
¢ raised in the next to last paragraph of the preceding scction.) Suppose

scalar ficld. Conscquently, we can think of these predicates as represent-

we also define D-Congfa;,a2; X,y,2,w) as: ing (for fixed a, and a,) a scalar function, and differentiate with respect

ﬂa'z,b,c.d,c.f[a'z st-Bet 2,35 A (a; # 3,-'8'2 £2,) A D(x,a,.alz,b,C)/\ to a new vector @fag) — @(a,) as before. In doing so we get a new

D(y,3,35,d:¢) A {{D(W,a5,33,b,) A D(z,,,a2,d,¢)) v
{D(w,a, ,a; &,b) A D(z,2, ,a'z,c,d) HE

formula E{x,a,,a;.23,34,y.2), with the representation theorem that {
(for any representation functions ¢ and ) this holds if and only if the ,
sccond dircetional derivative of Yo ¢! with respect to ¢(a,) — ¢(a,)

" tvc- .
".... "‘_-.-r'v
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this says (see Figurc 6) that if we take the directional derivative of T
with respect to ¢(a,) — ¢(a,) at x, ¥, z, and w, the absolute value of the
difference between this derivative at x and at y equals the absolute value
of the differcnce between the derivatives at z and at w.

Finally, if the original system was an ordered scalar ficld, we can
define D-Less (ag,a,; x,y) as:

Ja5,b,c,dfa; st-Betay,a, Afay #£a, =2, # 21) A D(x,a;,a2,b,c) A
D(y,a,,a'z,b,d) A ¢ Scal-Less d].

Then for any fixed a, and a, the predicates D-Cong (35,253 X,¥:2,W)
and D-Bet (a,,2,; x,y,2) satisfy the axiom system for an unordered
scalar ficld; and if the original system was an ordered scalar ficld, then
D-Cong, D-Bet, and D-Less obey the axiom system for an ordered

and ¢(a,) — @(a;) in that order exists at ¢(x) and has a value there
equal to that of the first dircctional derivative of = ¢~ with respect
to ¢fa,) — ¢(2,) at z minus the same first directional derivative at y.

“Then the claim

3y,z.c[E(x,2,,22,3.24.¥.2) A D{ya.a,.6.b,) A D(z,2,,2,.¢.b,)]

is suflicient for the sccond directional derivative with respeet to
¢(a;) — ¢(a,) and @(a,) — ¢(as) in that order to cxist at ¢(x) and have
a valuc there cqual to ¢(b,) — y(b,). Though sufficicnt, it isn't quite
necessary, because of the fact that the range of the first derivative
might not be big enough; but again it is a boring excrcise to use
lincarity of derivatives to provide an cmendation that is necessary and
sufficient. Call this emended version D'?)(x,a;,a,,23,24,by,b,). This is
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the desired formula for second directional derivatives; we can also R J
express the existence of the sccond derivative as a bilincar operator gt
(which will entail that we don’t have to worry about the order of the
vectors ¢(a;) — P(a,) and (a,) — ¢(as) in taking second directional
derivatives) by the same method used to get the first derivative as a ‘ .
linear operator.*° re 1
et |
) el
’ second | Since éhc
: directiona secon
I( . - Py <
: ¢ F. Laop laceans derivatives  directional
: > of T at x derivatives
' g . . . . ) with respect  sum to zero,
: " If we now particularize the discussion from arbitrary affine 4- fo V3 ll;eT Laplacean
; . . . . . . ’ an of Tatx
4 2 dimensional space-times to the Newtonian space-time considered (each taken is 7ero
z 'z . . twice
: . earlier, we can make statements about the Laplaccan of a given : !
; ) " . FIGURE 7
: 3 scalar field. For example, we can say that the Laplacean at a point x
M ~ . . P . . . .
; - exists and is zero: to say this is to say that the field is twice differentiable
; 4 . . . . ..
: . at x and (sec Figure 7) that there is an st-basic region R containing x ..
" 5(, & ) . . & p— — g the same length, and that the first three arc pairwise orthogonal and
) such that®! for all a, b, ¢ in R that arc simultancous to x, if xa, xb, and .,
_ . — . the last three are too, and such that for some t, u, t', u’:
; . xc all have the same length and arce pairwise orthogonal, then there are
§ 4 . i . . e "
oints d, ¢, and f such that: the sccond dircctional derivative with N I .
PR P ' L . () the second directional derivative at x with respect to ¢(a) —
g respect to ¢(a) — P(x) taken twice (i.e. with respect to ¢(a) — ¢(x) N el . . with s
u : A - Blx) taken twice is Y0~ Y(g); with respect to ${b) — H)
g P and ¢(a) — (x)) is equal to Y(c)— ¢(d); the sccond directional .. .
: L ' L. taken twice is Y(u) — ¢(1); and with respect to ¢{c) — P(x)
4 derivative with respect to ¢(b) — ¢(x) taken twice is equal to y(f) — e,
3 R o . taken twice is Y{p) — ¥(u):
~] ¥(c); and the second dircectional derivative with respect to ¢(c) — ) ] ) e e,
: . ) (b) the same as (a) but using primed points (a', X, v, p’, etc.).
3 ¢(x) taken twice is equal to W(d) — ¢(f). (Orthogonality for purely
spatial vectors, i.c. vectors whose cndpoints are simultancous, is (Again 1 have stated this in a platonistic way, using @, ¥, etc.; but I
3 definable in terms of the spatial congrucnce relation.) have used these platonistic devices only in contexts that we have
: This explains the claim that the Laplaccan is zero in terms of other already seen how to nominalize)
: claims that we have alrcady scen how to express nominalistically Finally, if we are dealing with an ordercd scalar field, then we can
3 (and without appeal to any non-invariant notions). say that the Laplacean has a value less than or cqual to zero at x, by
3 . 1032 < . . . . .
2 We can also say that the ratio®? of the Laplaccan at x to the Laplacean an obvious modification of how we said that it had value zero at x.
- ! 3 1 1 ] v . . - .
: at x' is equal to the ratio of the difference in scalar values between We can also make slightly more complicated invariant statements
N 1 ) s 4 f o qar 1 . . . .
! p and g to the difference in scalar valucs between p’ and q: we simp ]z about the Laplaccan nominalistically and without appeal to non-
b s M N 4 4 . . [ . .
i say {cf. Figurc 8) that there are a,_b,ismjxlta_ncous to x and 2', b', an invariant entitics, but the three statements described above will suffice
3 2 . ' . B N .yt o . ; .
! ¢’ simultancous to x’ such that xa, xb, xc, x'a’, x'b’, and x'c’ all have for Newtonian gravitational theory.
i
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FiGURE 8

G. Poisson’s Equation

By the Newtonian theory of gravitation I mean the theory of motion
for an arbitrary particle, assuming that the only forces acting on the
particle are gravitational forces. Given the space-time framework,
which 1 have already shown how to handle nominalistically, the
Newtonian theory of gravitation can be stated in two Jaws: a field
cquation governing a certain scalar field (the gravitational potential),
and an cquation of motion. The field equation is Poisson’s cquation,
which says that at any point the Laplaccan of the gravitational potential
is proportional to the mass-dénsity at that point, the proportionality
constant being negative. (The absolute value of the proportionality
constant has no invariant significance within this theory: to give it
significance you have to impose independent constraints on the mass
scale and on the scales of other quantities).
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For the moment let’s forget about the requirement that the pro-
portionality constant be negative, and require only that it be non-zero.
Then the ficld cquation can be restated as the conjunction of two
claims:

(9a) atany point the Laplacean of the gravitational potential is zero
if and only if the mass density at that point is zero;

(9b) at any two points at which the mass density is not zero, the
ratio of the Laplaceans of the gravitational potential is equal to
the ratio of the mass-densities.

Obviously the preceding discussion gives us most of the machinery
required for saying this. All that is missing is that I haven't yet talked
about the proper way to treat mass-density. Mass-density is a scalar
field of a rather special sort: a symptom of the special nature of this
field is that its scale is ‘less arbitrary’ than the scale for gravitational
potential, i.c. it is a ratio scale (or a log-interval scale)®® rather than an
interval scale. The special nature of the scale means that a proper
axiomatization of mass-density would involve a more complicated set
of primitives and axioms than the ones suggested above for scalar fields
generally. Nonetheless, the primitive used above for ordered scalar
ficlds would be included among or definable from the primitives used
in the more complicated treatment, and the axioms alluded to above
for ordered scalar ficlds would be included among or derivable from
the axioms in the more complicated treatment. Another thing definable
from the primitives is the notion of having a mass-density of zero;
and if we assume that there are points of mass-density zero, we can
avoid having to consider the details of the proper treatment of the mass-
density scale in nominalizing Poisson’s equation. For then we can
express the density ratio between points x and y as a ratio between the
density differences p(x) — p(z) and p(y) — p(z), where z is a point at
which the mass-density is zero; and we can comparc ratios of density
differences with ratios of differences in gravitational potentials, by the
device used earlier to compare the latter ratio with ratios of oriented

e — - i na
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and we've already scen how to express this. So the nominalization of

jo- int ine i tion C of this chapter. Since . L
spatio-temporal intervals on a line in Sec p Poisson’s equation is complete.

our invariant treatment of the Laplacean gives us a way to compare
ratios of Laplaceans of the gravitational potential with ratios of
differences of gravitational potential, we can put thesc things together
to compare ratios of Laplaccans to ratios of densities. That is, roughly
(i.c. ignoring complications arising from the possible finiteness of the
gravitational potential scale, which we know by now how to handle),
(ob) is equivalent to:

PHRICE]

‘H. Inner Products

It now remains only to give nominalistically the Jaw of motion for
Newtonian gravitational theory: this says that the acceleration of a
point-particle subject only to gravitational forces is at each point on
the particle’s trajectory equal to the gradient of the gravitational

r

for any points x and x’ and any point z at which the mass density
is zero and any points p, q, p’, and q":
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P = pl2) _ ¥(@) - vip)
piX)— o) ¥(q) - ¥ ()
if and only if

the Laplacean of Yo~ ? at x _ ¥(q) — ¥(p)
the Laplacean of Yo ™! at x' ¥iq) - ()

and all the notions appearing in this are ones we have previously seen
how to define nominalistically. The appeal to points at which the
density is zero in this treatment is a bit inclegant, but it can be avoided
on a fuller treatment that takes more seriously the fact that density has
a ratio (or more accurately, log-interval) scale.®*

The only thing that remains to be donc in trcating Poisson’s cquation
is to express the fact that the proportionality constant in the cquation
is negative. Here for the first time we must use the primitive ‘Scal-

Less’, for Poisson's equation is not invariant under reversal of signs
of the gravitational potential: a world in which Poisson’s cquation
held with a positive proportionality constant would be a world where
objects had morc gravitational potential energy at the surface of the
earth than on a mountain top. It is clcar, however, that the fact that
the constant is negative amounts merely to the fact that

{9c) the Laplacean of the gravitational potential is always less than
or equal to zero,

potential at that point.*® The invariant content of this law is exhausted
by the claim that the gradient is proportional to the acecleration, witt
a positive proportionality constant that is the same for all trajectories.
(It is usual to usc a proportionality constant of 1, but this simply
reflects an arbitrary choice of scale for the gravitational potential,
relative to scales for spatial distance and for time.)

To state the law nominalistically, we first nced to be able to com-
parc ratios of inncr products of purcly spatial vectors with ratios of
scalar differences (where a purcly spatial vector is one whose endpoints
arc simultancous). But doing this is casy, given what we've done so

far: first, given four simultancous points x,, x,, y,, and y, (cf. Figurc
—_
9(a)) let z; be chosen so that x,z, is parallel to, points in the same
—
dircction as, and has the same length as y,y,, and let z, be the point
at which the perpendicular to the line x;x, through z, meets x,x,.
(If x; = x3, so that ‘the linc x,x,” isn’t unique, it won’t matter where
you take z,.) All this is nominalistically describable, of course. If z, is
. . —_— I . . .
Xy Or X, is xy, the inner product of x;x; and y,y, is zcro; if x, is
strictly between x, and z,, the inner product is negative; otherwise,
the inner product is positive. Similarly, given simultancous points x;,
4 ’ ¢ ' . - . L
X2, Y1, and y2, we can construct z; in a similar way, and again its Jo-
cation determines the sign of the inner product.
. . — —
So much for the signs of the inner products x,x,'y,y, and

R 4
X3X3'Y1Ya: now how about about their magnitudes? Intuitively, the
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ratio of the magnitudes of the absolute values of these inner products
is equal to the length of XX, times the length of X;2, divided by the
length of x;x; times the length of xz,. But this intuitive idea has to
be put nominalistically. To do so, we first make a copy of the triple
(X}, X3, 22) on the line through x,, x,, and z, {se¢ Figure o(b)): let
X}, X3, and z} be on the same line as x,, x,, and z,, with x]x3 S-Cong
X1X2 and ]2} S-Cong X123 and x4z} S-Cong x325. (Spatial congruence
makes sense in this context, since x;, X3, and z3 are all simultaneous
and so are xj, x3, and z3.) Now suppose u,, u,, uy, and u; are four
further points (not necessarily simultaneous) at which we are interested
in a scalar property like gravitational potential. Then to say that

XXz yays | W(os) = ¥(o,)

Ty - ()

(where the dots indicate inner product, and the convention on ratio-
statcments stated in note §2 is in force), is simply to say that

(blx2) — dulx1))(BL(z2) — Pulx,)) (4’(“'2) - 'ﬁ(“’l))
=(¢u(x2) — SL(x1)) (P(z3) — @0 (W{wa) — ¥(u,))

(where @, is a coordinatization compatible with ¢ of the line L on
which x,, x,, 25, X}, X3, and 23 all résidc); and we saw how to say
this nominalistically at the end of Section C.

To be more precise, the above sketch shows how to state a formula
governed by the representation theorem that for any ¢ and ¥, the

formula holds if and only if

L r ! ’ -
(10) X;x,, ¥,¥2, X;X; and yyy, are purely spatial vectors,

and

XX Yas W) = Yluy)

Ty V) — v
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I. Gradients

The availability of the notion of inner product ratios in New.tonfan
space-time allows us to associate with cacl‘l ‘ra}lo of dcrlva.nv::
operators’ a ‘ratio of vectors: namely, the ‘ratio of -tlu: gra'dlcnt
vectors that correspond to the derivative operators. (This then is fhe
analog of ‘index raising’ in tensor analysis.) To be more precise,
observe that since we can express (10), we can also express

r_r L . ] d
(11) XX, ¥1¥2» X;X3, and Y}y arc purcly spatial, an
—_—

X3X2"Y1Y2
= —
’ 4 . Lt
X1X2'Y1Y2
; irecti ‘vati -1
is equal to the ratio of the dircctional derivative of Yo ¢

) ﬁ . . . »
with respect to y,y, at z to the dircctional derivative of

—
o ¢~ 1 with respect to yyy; at 2';

for we know how to nominalistically compare directional derivatives

with scalar-difference ratios like

Y(uy)— Ylua)
Yluy) — yiv)
and so we can certainly compare ratios of directional derivatives with

such scalar-diffcrence ratios.*¢ But then we can say that (11) holds for

’ 4 - - - H‘
all purely spatial vectors y,y, and yyy3; and this is in effect to say

—_— . . d-
(12) there is a real number k such that x;x; is k times the gradient

—_-I’ . . . -1 ’
of Yo ¢~ * at z and x| x; is k times the gradient of Yo ¢~ " at 2.

We would also like to be able to say that (12) holds with some
positive proportionality constant k. Call this claim (127). To say th.IS,
we simply add to the nominalistic definition of (12) the further claim

i i d f x,x, and
that for all purely spatial vectors y,y,, the inner product of x,x;
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—_— -
Y12 is positive if and only if the directional derivative with respect to
—

—_—
¥1Y2 at z is positive, and analogously for x)x; and z’. (This involves a
sccond use of the rclation ‘less than in gravitational potential)

J. Differentiation of Vector Ficlds

(12°) is the key to a nominalistic understanding of the right-hand side
of the law of motion; we now have to deal with the left-hand side,
which involves the notion of the acccleration of a point particle.
Until now, the ontology of the theory has included only space-time
regions; now we are invoking new entitiés, viz. point particles, and to
go with them we will nced a new primitive predicate, that of a point-
particle occupying a space-time point. From this we can define the
notion of the frajectory of a particle: it is the region consisting of all
space-time points that the particle ever occupics.”

An implicit presupposition of the law of motion is that the trajectory
of each point particle is a region that is connected in the st-topology
given in Section A of this chapter and which contains no two simul-
tancous points. I will call any such region of space~time (whether there
is a particle there or not) trajectory-like. The most important trajectory-
like regions to consider, aside from actual trajectories, arc those straight
lines in spacc-time that are not purely spatial: as Newton's bucket
argument morc or less shows, such lines must play a crucial role in
formulating the law of motion.

In formulating the law of motion, it is necessary to speak of the
spatial scparation between trajectory-like regions, and first and sccond
derivatives of this spatial separation. Since the spatial separation between
trajectory-like regions is in effect a vector—it has direction as well as
magnitude—we need to extend the treatment of differentiation in
Section D to vector ficlds.*®

More particularly, let S and T be any two trajectory-like regions.
It is uscful heuristically to think of them as ‘defining a vector field" as

s

B e s



86 SCIENCE WITHOUT NUMBERS

follows: for any point x, regard the vector ficld as being defined at x
if and only if both S and T contain points simultancous to x; and
regard the value of the field there as the vector whose initial point and
terminal points are the points of S and T respectively that are simul-
taneous to x. Let 2, and a, be any points. What can be said, invariantly,
about the value of the directional derivative of this vector field at x
with respect to the vector 27357 Well, directional derivatives of scalar
fields could be objectively equated with differences of scalars, so you
would expect that directional derivatives of vectors could be objectively
equated with differences of vectors. But a difference of vectors is

itself a vector. What we should expect, then, is that we could define

nominalistically a formula D-Vee(x,a,,a2,b4,b,), meaning intuitively
that at x the directional derivative of the spatial scparation of T from
S with respect to 2,25 exists and is equal to the spatial scparation of
b, from b,: we ought to be able to define this without assigning 2
number to the length of the spatial separation, or to anything else.
Doing this involves only a fairly straightforward generalization of
what was done in Section D; in fact, in some ways the definition of
vector differentiation needed here is easicr than the definition of scalar
differentiation given there, since space-time unlike the range of temp-
erature or gravitational potential is being assumed to be infinite in
extent, so there’s no need for all the fancy footwork involving the
lincarity of derivatives which the possibility of finiteness forced on us.
But there are also some additional complications in the vector case.
To simplify the presentation, let p, and g, be the points on S and T
respectively that arc simultancous with x; and let Parallclogram*
(x,y,z,w) mean that x, y, z, and w cither are the vertices of a paraliclo-
gram with x opposite 2, or they are the vertices of a limiting case of 2
parallelogram, that is, either x=y and z=w or x=w and z=Y.

Also, Jet us define a predicate (xyzw) = st.x (rstu) to mean (see Figure
10) that there are points s” and u’ such that Parallclogram*® (x,5'51)
and Parallclogram* (z,u',u,t) and (xyzw) =, {xs'20). The last
conjunct uses the signed product equality defined in Scction C, only
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/
u'/
Ficurr 10

this time between two spatio-temporal intervals instead of a spatio-
temporal interval and a scalar interval; what the definition as 2 whole
docs is to extend this product comparison from the special case where
X, y, 1, and s arc all on a linc (and so arc z, w, t, and u) to the more
general case where xy is parallel to rs (and zw is parallel to tu). (In
?mvmg to make this extension, we are paying for the laziness expressed
in note 47.) We are now ready to define D-Vec (x.a,,az,b,,bz);
scc Figure 11:

If Ay =2, thc?n b, =b,;and if a; # a, then YU[if U is an st-basic
region containing b,, then there are y and z such that: (a) yz Par
aja3; (b) x is strictly st-between y and z; and (c) for all ¢ other than

x that are strictly st-between y and 2, there is a point r such that

Parallclos 2* {honoa " H : -
Paraliclogram™ {(ppuget) and a point by in U such that

(xtbby)=,, UL 29:’)]~

The last cla s i if Xt is h i
clause says in cffect that if xt is h times a,a, for some real
number b, then g,r (which is the change in spatial separation in passing
—
. T . . . ﬁ
from x to 1) is h times b, b,, and hence is ‘close 10’ the vector h - b;b,.

Jt is casy to sec that if D-Vee (x,a5,a,,b,.b,) then b, and b, are
simultancous, which is what you'd expect since the endpoints of the
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T

q, is simultancous with p, and r,
but need not be in the p,-p,-q, - planc

FIGURE 1T

spatial separation vector are always simultancous; also, it is easy to see
that when in addition a, is simultaneous to a, then b, = b,, which
again is what you'd expect since the spatial scparation vector has the
same valuc at all simultancous points.

Observe that the derivative of a vector ficld with respect to a fixed
vector is' again a vector field; consequently we can immediately
differentiatc again with respect to the same or a different vector.
Sccond and higher derivatives are thus a bit casier for vectors than for
scalars, where it took a bit of work to put the result of taking the first

]
derivative into the same format as the scalar ficld that we had started
with., -

K. The Law of Motion
1 1 10T\ 'S,
The law of motion can now be stated in any of a varicty of way

o a

Perhaps the most natural is to introducc the concept of a tangent to
. H \
trajectory (or a trajectory-like region) at a point: a tangent to a trajectory
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T at a point z is a straight line S through z, such that the directional
derivative of the spatial separation between T and S with respect to
any vector exists and is zero at z. The tangent to T at z is unique if it
exists. Let s call a trajectory (or trajectory-like region) diffcrentiable at
z if it has a tangent at z and this tangent is not purely spatial. We can
now take the preliminary part of the_law of motion to consist in the
claim that the trajectory of any point particle is both trajectory-like
(in the sense defined in Section J) and differentiable.

The main part of the law of motion requires that we compare the
accelerations of points on the same or different trajectories with the
gradients of the gravitational potential at those points. Let T and T
be any trajectorics, and let z and 2/ be any points on them. Let S and
S’ be the tangents to T and T’ at z and 2’ respectively, and let y and

— —_
¥’ be points on S and §’ such that zy and 2'y’ are temporally congruent
and have the same temporal oricntation. The law of motion js then
simply that (for any such T, T’, 2, ', S, §’, ¥, and y’) there isa positive
real number k such that: (a) the second directional derivative of the
spatial scparation of S from T at z with Tespect to ;): taken twice is
k times the gradicnt of the gravitational potential at z; and (b) the
second directional derivative of the spatial separation of S’ from T at
2’ with respect to ?y’ taken twice is k times the gradient of the
gravitational potential at 2’. But the previous two scctions show how
to say this: it is simply a matter of plugging the appropriate second
directional derivatives into (12'). So the nominalistic formulation of
the Jaw of motion is complete, and this together with our previous
nominalization of Poisson’s cquation gives us a complete nominalistic
formulation of Newtonian gravitational theory.

L. General Remarks

Let us review the strategy we have followed. We started out by giving
a joint axiom system containing axioms for space-time, axioms for
the gravitational potential, and (though we didn’t mention them till
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later) axioms for mass-density. We then proved that for any model of
this joint axiom system, there would bc a 1-1 function ¢ from the
domain of the model (i.e. the space-time points) onto R, and two
functions y and p from the domain into the reals, all satisfying certain
homomorphism conditions. We then showed that there were further
nominalistic statements expressible using the primitives of the joint
axiom system (togcther with the notion of a particle occupying a
point) such that if these further nominalistic statements were true in
‘the model then the usual platonistic formulation of Newton's theory
of gravitation would come out true (taking ¢ to be the spatio-temporal
coordinate function, ¥ the gravitational potential function, and p the
mass-density function). So the nominalistic formulation of the physical
theory in conjunction with standard mathcmatics yields the usual
platonistic formulation of the theory; and conversely, the nominalistic
"formulation is a consequence of the platonistic formulation, given
standard mathematics. From this it follows that any statement in the
nominalistic language proposed that is a consequence of the platonistic
axioms and standard mathematics is a consequence of the nominalistic
axioms unaided by mathematics: for as we saw carlier in this mono-
graph, mathematics when applied to nominalistic axiom systems does
not yield any nominalistically-statable conclusions you couldn’t get
otherwise. So the nominalistic formulation of physics and the platonistic
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an:-alogous platonistic apparatus. Also, most of what P've developed is
quite general: e.g. the trcatment of differentiation in Section D works
for arbitrary functions from one affine space to another; and the
treatment of gradients, Laplaceans, and inner products wox:ks for an
arbitrary affine space on which therc is a congruence relation defined

or which has distinguished subspaces (c.g. in the New .
the 3-dimensional subspaces produced by. factoring by the simultanciry
relation) on which a congruence relation is defined. Once the dcvclot)-
ment of this apparatus is complete, the laws of Newtonian gravixatiurf:]
theory can be presented very qx'xickly in terms of it; again, probab.l

almost as simply as they are presented on a platonistic approach )I’
belicve that the reader who works through this material at 2ll carch vl.l ’
will soon convince himself that this is so- S

tonian cxample

I do not of course claim that the nominalistic concepts are anywhere

near as convenient to work in solving problems or performing com-

putal'lom: for these purposes, the usual numerical apparatus is a
practical nceessity. But it is a necessity that the nominalist has no need
to forgo: he can treat the apparatus in the way suggested carlier in the

book, i.e. as a useful instrument for making deductions from the

nominalistic system that is ultimately of interest; an instrument which

yiclds no conclusions not obtainable without it, but which yiclds
them more casily.

formulation have preciscly the same nominalistically-statable con-
sequences; and so mathematical entitics are theoretically dispensable in
the theory of gravitation.

I would Jike to conclude this chapter by saying that the nominalistic
formulation of gravitational theory proposed here is not as complicated
as it may look; or more accuratcly, that though it is complicated, that
is because platonistic physics is complicated too, though it may be
presented simply once we have explained a Jot of platonistic apparatus
(such as gradients, Laplaceans, and so forth). Most of what 1 have spent
time doing in this chapter is to deveclop a nominalistic version of that

m
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4 complicated platonistic apparatus; and T doubt that my development
|
,E of that is very much morc complicated than the development of the
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Logic and Ontology

In this final chapter I want to deal with worries that the reader might
have as to whether the version of physics presented here is genuinely
nominalistic. Some of these worries, about my realist attitude toward
space-time, scem to me cntirely misguided; 1 have discussed this
matter early in Chapter 4. The remaining worry, which I take much
more scriously, stems from the fact that there are two respects in which
I have overstepped the bounds of first-order logic. The fact that I have
overstepped these bounds raiscs two questions: (a) what are the pros-
pects for making do with first order logic? (b) If the prospects arc poor,
what impact will this have on nominalism? Although 1 strongly
suspect that onc can make do with first-order logic in developing
gravitational theory nominalistically, proving this would involve much
more work than proving the adequacy of the sccond-order nominalistic
system considered in previous chapters. Conscquently 1 will begin by
considering question (b). Afterwards, 1 will say a litde bit about
question (a), for this question is of interest whatever the answer to (b).

The two respects in which 1 have overstepped the bounds of first-
order logic are: (i) that in axiomatizing the geometry of space-time
and the scalar orderings of space—time points, 1 have invoked what I

92
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called in Chapter 4 * the complete logic of the partjwhole relation’ or
‘the complete logic of Goodmanian sums’; and (i) that in comparing
products of intervals in Scction B of Chapter 8, I have invoked the
binary quantifier ‘fewer than’. Now strictly speaking, we do not
really need (ii) in addition to (i): the logic of Goodmanian sums is
sufficient to give us the cardinality comparisons we need as well as
the representation theorems we need (as 1 will show later on in 2
footnotc). But I think that for a varicty of rcasons it is heuristically
advantageous to kecp the use of extra logic in making cardinality
comparisons scparatc from the usc of cxtra logic in giving represcntation
theorems, so I will put no weight on the fact that one can make the
cardinality comparisons one needs using only the logic of Goodmanian

sums.

Let us introduce the symbol & for the binary quantifier ‘fewer than’:
that is, Jet *[Apple (x)] Fx |Orange (x)]” mean ‘there are fewer apples
than oranges’. Now, if we think of the full ‘fewer than’ quantifier as
making discriminations among infinitc cardinalitics (c.g. as such that
‘there are fewer points than regions’ is truc), then there is no need to
invoke the full ‘fewer than’ quantifier in our theory: we can invoke a
slightly weaker quantifier & which makes no distinction berween
infinite  cardinalities. (Thus ‘[Apple (x)) £x [Orange (x)]’ and
‘[Apple (x)] % ox [Orange (x)]" have the same truth-valuce if there are
only finitely many erangee; and i€ there are infinitely many oranges
then even if the number of oranges is uncountable, ‘[Apple (x)] F ox
{Orange (x)]" is truc if and only if there are only finitely many apples.)
In the future, T will usc only the quantificr 7 4, and will use the term
“fewer than’ in accordance with the meaning of # , rather than with
 in those occasions where it marters.

It will turn out actually that in Newtonian gravitational theory, if
we add a new predicate to the theory then the ‘fewer than’ quantifier
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can very casily be dispensed with in favor of a still simpler quantifier,
the binary quantifier *3y,," meaning ‘there are only finitely many’
(i.e. ‘3p x Apple (x)' means ‘there arc only finitely many apples’).
So it is really this quantifier that raises the issues of whether cardinality
comparisons like those madc in Section B of Chapter 8 are nominal-
istically lcgitimate. '
The first point 1 want to make is that use of the “finitcly many’
quantifier does not scem pretheoretically to involve one in ontological
commitments to abstract entities. I I assert or deny that there are only
finitely many grains of sand, this appears to involve no commitment
whatever to abstract entitics, just as it appears to involve no commit-
mcnt to abstract catitics to assert or dery that there arc less than 87
grains of sand. With regard to assertions or dcnials that there are less
than 87 grains of sand, three attitudes arc possible. First one could say
that 3.4, (andfor its denial 3, 4,) is simply a part of logic, as are
3,4, 3, 2, etc.: on this view, logic includes not only first-order logic,
but the recursive set of axioms for 3, ,, 3, ,, etc. given in Chapter 2.
Second, onc could say that despite appearances, ‘there are at least 87
grains of sand’ docs involve ontological commitments to abstract
entities: for, onc might say, what it means is that there is a 1-1 function

from the set {o,1,...,86} into the sct of all grains of sand, and henee ..
involves a commitment to functions, numbers, and scts as well as:
grains of sand. This view is quitc implausible—c.g. it makes the"

sentence ‘There are at least 87 grains of sand, but there are no numbers,
functions or sets’ inconsistent! Intuitively, the claim about the 1-1
function scems intimately related to the ‘there are at least 87" claim—
it is what I've called an abstract counterpart of the claim—but though
intimately related, the claims are distinet. The third possible view is
that the “there are at least 87" claim is equivalent in meaning to a claim
in first-order logic with identity. As a view about meaning this isn't
really very plausible; but on the first view too ‘there are at least 87
grains of sand’ is logically equivalent to a claim in first-order logic with
identity, so unless we are very hung up on meaning then the third
view and the first do not seem importantly different in this case.
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Now let’s consider the claim ‘there are only finitcly many grains of
sand’, or its denial. Here onc can nof take the third of the lmcs. uscd for
‘there are fewer than 87 grains of sand’ or its denial: the claim a!:out
finitude cannot be identified (cven up to logical cquivalence) \\'1ch a
claim in first-order logic plus identity, But the first linc is still possTble:
we can take ‘there are only finitely many’ as a primitive qua.nnﬁcr,
just as we could take ‘there are at most 87" as primiti.vc.” Adlmt’tcd.ly}
doing this has some consequences that arc not-cntxrcly attractxvc‘. i
we take this as a quantifier and also definc logical conscquences a la
Tarski,® then the consequence relation is ncither f:om‘pact nor
recursively cnumerable. But the only alternative to takx.ng thcrc. a;;c
only finitcly many’ as a primitive quantifier (one we might or mig t
not clect to usc in our theorics) seems to be to say that despite all
appearances ‘there arc infinitcly many grains of sand’ comfnits you to
the existence of functions, numbers, and scts as well as grains of sam.:l;
i.c. that it is cquivalent in meaning to {rather than merely, has as its
abstract counterpart) the claim ‘there is a 1-1 function froTn the set of
natural numbers to the set of grains of sand’. Surely this is implausible,
for surcly it is consistent to maintain that there aér!c infinitcly many
grains of sand but no numbers of functions or sets. . ’

I have argued that usc of the quantificr ‘there are o.nly finitely many
or its negation docs not necessarily involve commxtmenf 10 abstracf
entities; and the same could of course be said for the fewer than
quantifier. Analogously, 1 argucd in Chapter 4 that to usc the com-
plete logic of Goodmanian sums in onc’s theorics does not necessarily
involve commitment to abstract entitics. In all these cases however,
the question remains whether it might not be better to rcpl.acc the
theory that invokes the extra logic by another theory that invokes
abstract entitics but docs without the extra logic.

That is exactly what the first-order platonist advocates floing. By a
first-order platonist 1 mean somcone who accepts theories that pos-
tulate abstract entitics, but doesn’t accept any logic beyond ﬁrst-ord.cr
logic. Such a first-order platonist has no resources at his dis‘posal with
the power of cardinality quantificrs like ‘there arc only finitcly many
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F's’ or ‘there are fewer F's than G's’. For instance, whatever non-
logical vocabulary he introduces and whatever consistent and re-
cursively axiomatized (or recursively cnumcrably axiomatized) set
T of axioms he asserts involving this vocabulary, there will be truths
involving the cardinality quantifier that {(when translated into the
language of T) do not follow from T; and even if we were to give up
the restriction that T must be recursively axiomatized (or recursively
enumerably axiomatized), there will be valid inferences involving the
cardinality quantifier that (when translated into the language of T)
are not validated by T.®? But this does not disturb the first-order
platonist: the first-order platonist rests content with a recursively
axiomatized theory—say, first-order sct thcory—in which we can
translate the cardinality quantifier in such a way that an important part
of its content is captured. (Thc same translation into second-order sct theory
would give the full content of the cardinality quantificr; but of course
second-order sct theory has a non-compact and non-recursively~
enumerable logic, so using a translation of the cardinality quantifier
into this theory would be no gain).®*> We know by experience that the
platonistic first-order weakening of the cardinality quantificr suffices
for physics. (It suffices for classical mathematics, which in turn suffices
for physics.) So the first-order platonist has a method for doing with-
out cardinality quantificrs in physics and replacing them by weaker
set-theoretic surrogates in a compact and recursively-cnumcrable
logic.

This way of looking at things reinforces the point I made carlier,
that use of the cardinality quantifier isn’t platonistic, what's platonistic
is only a certain set-theorctic surrogate for the eardinality quantifier.
But it also shows a prima facic advantage of platonism: if we do usc the
first-order set-theoretic surrogate for the cardinality quantifier (and
a similar first-order set-theoretic surrogate for the logic of Goodmanian
sums), then we can make do in our theorizing with a compact and
recursively-cnumerable fragment of logic. And isn’t that an advantage?

I must admit that T think that it is an advantage. Consequently, I
think it would be highly desirable to show that the nominalist too can
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do without the cardinality quantifier and the completc logic of Good-
manian sums, and can make do instead with weaker surrogates in a
compact and recursively-cnumerable logic. I'm inclined to think in
fact that this claim is true, and will give some considerations in support
of this shortly; but I don’t belicve that the claim can be proved without
a great deal of work (which I haven't done), so the question arises,
what if it isu’t truc? Would nominalism thereby be defeated?

To this I think the answer is no. For although there arc certainly
advantages 1o vsing only a compact and recursively axiomatized
fragment of logic in developing physics, there are also advantages to
keeping one’s ontological commitments to a minimum; and the
situation that we would be in (on the assumption that nominalism
can’t be made to work without going béyond first-order logic) is that
we would have to make a choice as to which of two desirable goals is
more important. It secms to me that the methodology to employ in
making such decisions is a holist one: we should be guided by con-
siderations of simplicity and attractiveness of overall theory. It scems
totally unreasonable to insist on sticking to the requirement that logic
be kept compact and recursively enumerable, whatever the costs for
ontology; it is the simplicgfly of the overall conceptual scheme that ought
to count (as Einstein pointed out long ago against those who thought
that the simplicity of Euclidean geometry should lead us to stick to it
come what may).%*

Admittedly this does not settle the issuc of whether one should be a
nominalist in the casc at hand—the case where you can maintain
nominalism by using a cardinality quantifier together with the com-
plete logic of Goodmanian sums but (we are supposing) can’t maintain
nominalism with a weaker logic. All I've said is that onc must look
to overall theory to decide. My own view is that even if we arc
ultimately forced to make this decision—that is, even if it turns out
that there is no reasonable way for the nominalist to make do with
first-order logic—then nominalism is the reasonable position. For in the
first place, the broader logics under consideration have their attractive
aspects as well as their drawbacks.®® And in the second place (and more
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importantly) the use of this fairly small amount of extra logic saves
us from having to believe in a large realm of otherwise gratuitous
entitics, entities which are very unlike the other entities we believe in
(due for instance to their causal isolation from us and from everythi
we experience), and which give risc to substantial philosophical
perplexities because of these differences.%® In this situation to insist on
sticking to first-order logic because it is compact and recursively
enumerable secms 10 me a bit like insisting on sticking to monadic
logic because it is decidable.®?

I

I will now say something about the question of how good the pros-
pects are for making do with first-order logic. We have seen in eatlier
chapters how to give a nominalistic theory N in a broader logic that
is an adequate nominalistic formulation of the Newtonian theory of
gravitation; it scems reasonable then, in looking for a first~order nom-
inalistic theory of gravitation, to Jook at first-order subtheories of N,

It should be noted at the outsct that there is a quite uninteresting way
to get a first-order subtheory of N with precisely the same first-order
sentences (i.e. sentences not containing the cardinality quantifier or
any second-order quantifiers) as consequences that N has as con-
sequences: simply take as axioms all the first-order sentences that follow
from N. This, however, is a bit reminiscent of the idea of dispensing
with electrons in an axiomatization of physics by taking as axioms all
those consequences of our standard theory that don’t contain references
to clectrons. Let us then reject this strategy, on the grounds that it docs
not yicld a sufficiently anrractive first-order theory.

Since ‘attractiveness’ is not an casy notion to formalize, it seems that
the only workable strategy in investigating whether there is an
attractive first-order subtheory of N that is adequate to physics is to
look at somc particular first-order subthecory of N that does seem
attractive, and try to prove that it is sufficicntly powerful. Of course,
if it turns out that the particular subthcory one has investigated is not
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powerful enough, that won't prove that no attractive first-order
subtheory of N is powerful cnough: one may have simply left out
first-order axioms that should have been included. But there seems
to be no way around this difficulty, without giving precisc formal
content to the notion of attractiveness; and doing thar seems obviously
impossible. »

Therc is, however, a rather natural first-order subtheory of N to
investigate, and I would conjecture that this subtheory (which I will
call N} is sufficiently powerful, in the sense of being adequate for the
development of standard gravitational theory. I belicve that by investi-
gating this conjecture we will be able either to substantiate it, or to
find out enough about why it fails so that we will able to supplement
the theory (in an attractive way) with additional first-order axioms so
that the resulting theory will be sufficiently powerful,

To scc what the first-order subthcory Ny of N that I have in mind
ts like, It us first not worry about the ‘fewcr than’ quantifier and worry
only about how to climinate the use of the second-order quantifier,
ie. of what I've called the complete logic of Goodmanian sums.
Intuitively, these sccond-order quantifiers range over all regions that
contain only points in the domain of the first-order quantifiers; the
problem in finding an adequate first-order subthcory of N, then, is
the problem of finding an adequate first-order nominalistic axiomatiz-
ation of the notion of region.

Looking at the matter platonistically, the set of all regions forms a
complete atomic near-Boolean algebra, where by a ncar-Boolcan
algebra 1 mcan somcthing just like a Boolean algebra except not
containing a zcro clement. (Recall the earlier stipulation that there is to
be no region that contains no space-time points.) The atoms of the
algebra, i.c. the regions with no proper subregions, are of course just
the space—time points: to say that the algebra is atomic is to say that
cvery region contains such atoms (and this implies that every region is
the sum of the atoms it contains). Now, there is no difficulty in giving a
complete first-order axiomatization of the notion of an atomic ncar-
Boolcan algebra (using, say, the primitive ‘C’, meaning ‘is a

e ve e e e
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subregion of ). The problem is with the notion of completeness; i.c. with
the idea that there are as many regions as there possibly could be,
given that there arc only the space-time points that there are. The
platonistic method of specifying completeness is to say that for every
non-cmpty set of space-time points, there is a region containing
(i.e. having as subregions) the points in that sct and no others. The
obvious nominalistic tack is to replacc this claim by an axiom schema:
to regard, for each formula @(x,u,,. . .,u,) of the language, the sentence

(13)  Vu,,.. ,u,{3x[x is a point and o(x,u,,.. WU,)] =
FrVx[x is a point — (x € rer @(x,uy,. . . u,))]}

as an axiom. Here I am using only one style of variable, ranging over
regions gencrally; x is a point’ is defined as ‘Vy(y € x>y =x).
o{x,u,,...,u,) can be any formula in the nominalistic language: in
particular, it can contain physical vocabulary like ‘spatio-temporally
between’ or ‘congruent in gravitational potential’; and it may include
quantifiers that range over regions. (This latter stipulation means that
some of the instances of our schema will make impredicative assertions
of region-cxistence. This scems legitimate: on the realist approach to
space-time I've adopted, regions are physical cntities that objectively
exist independently of our picking them out. But if you don’t like
impredicativity, you could weaken the theory by disallowing such
instances of (13).)

Having axiomatized the notion of region in this first-order way, it is
clear how to get a subtheory of N with no sccond-order quantifiers:
simply take N and restrict all first-order quantificrs by the defined
predicate “point’, then replace all second-order quantifiers by un-
restricied  first-order  quantificrs, and append the axioms for
regions.*®%% [So in particular, the Dedekind continuity claims {for
the geometric ordering of space-time points, and for the ordering of
space-time points with respect to cach scalar) arc each made by a single
axiom rather than by a schema: a common notion of region is used
in axiomatizing each of the Dedckind continuity claims. This turns
out to be important for insuring that the different orderings
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interrelate in the desired way.] This theory (I'll call it N*) isn’t quite a
first-order theory, because it still contains the cardinality quantifier.

So we now have to get rid of that.
When I sketched how to formulate N in Chapter 8, 1 made use of

“the ‘fewer than’ quantificr & ,; but as remarked above, this can be

dropped in favor of the finiteness quantifier 3yy,, if we add a predicate
to the theory. It is nceessary to show how this is donc, before going
on to perform the further task of dropping 3y,

The predicate we need to add, in order to replace &g by 3y, is a
binary predicate ‘<’ holding between regions: ‘r, <r,’ is to mean
intuitively that r, contains no fewer points than does r, (with the
convention on ‘fewer than’ introduced before: all infinite regions arc
to be regarded as containing equally many points). Since the ‘fewer
than’ quantifier was applicd in Chapter 8 only in the context of points
rather than of arbitrary regions—that is, it occurred only in context
A(x) £, B(x) in which the formulas A{x) and B(x) couldn’t be

 satisficd by anything other than points in any model of the theory—

o . . ,
then it is clear that ‘%' can be dropped in favor of ‘<’ as long as we
- . . . t ] »
can axiomatize ‘<’ in such a way that in any model, ‘x; < x,’ will be

satisfied by precisely the pairs {r,,r,) such that r, contains no fewer

points than r,.”® I is in order to meet this condition that the quantifier
3;i, must be introduced.

An axiom system that meets this condition is as follows. [The theory
of atomic ncar-Boolean algebras is presupposed as a background
theory. Although the only primitive I've introduced for that theory is
‘c’, Tll use the defined term ‘point’ introduced above and various
other Boolean notions like “U’, since it is ebvicus how to paraphrase
claims involving them in terms of ‘€ ’. The only additional primitive to
be used in the axiom system is the cardinality relation relation ‘<';
‘<’ is defined in terms of it, i.e. ‘x <y’ is defined as ‘x <y and not
y <x'. Also, ‘Inf(x)’, meaning intuitively that x is infinite, is defined as

‘Yy(y < x)".] Here arc the axioms:

1 XSYAYSZoX<z
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X<yvy=x

IxIy(x < y)

Point (x) = Yy(x <y)

Inf(xu )« Inf(x) v Inf(y)

—Inf(x) A Point (y) A yEx—x<xuy A =3Jz(x<z< xUY)
7 —Inf (x) = 35, y[Point (y) A y= x].

(=0 R N PV V)

Axioms 1-6 don’t contain ‘3y,’, and they together with
7, IxInf(x)
(which also doesn’t contain ‘3y;,” but only the defined predicate ‘Inf’)

are enough to guarantee (in the context of the axioms for an atomic
near-Boolcan algebra) that in any model of the theory, if we define
ry Eqr, as “(ry,r,) satisfies ‘x; <x; A%, <x,"", then:

(a) Egq is an equivalence relation whose equivalence classes form a
linear ordering with first and last elements.

(b) Each equivalence class that has a successor in this ordering has
an immediate successor.

(c) The last equivalence class has a predecessor but no immediate
predecessor; but it is the only equivalence class with this
property.

(d) For each positive integer n, the nth equivalence class in the order-
ing contains precisely those regions that contain exactly n points.

So the last cquivalence class in the ordering—the one that contains
preciscly the regions satisfying the predicate ‘Inf’—contains only
infinite regions, and there arc no infinite regions in the first, sccond,
third, etc. cquivalence classes. However, a compactness argument
shows that there are models of axioms 1-6 and 7, in which there arc
‘non-standard’ cquivalence classcs, cquivalence classes which occupy
no finite position but also are not last; regions in these equivalence
classes will be infinite, but will not satisfy the defined predicate ‘Inf”.”!

If we are to rule out such non-standard models of ‘<’, we must
replace axiom 7, by axiom 7 (which entails 7,). That axiom 7 does
rule out non-standard cquivalence classes is clear: it implies that the
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ordering of equivalence classes is a well-ordering, and this together
with (a)-(c) implics that the ordcring has order type @ + 1 (i.e. of the
positive integers followed by onc infinite clement). This last result
plus (d) shows that in each model of the axioms of atomic ncar-
Boolcan algebra plus axioms 1-7, ' <7 is satisfied by precisely the pairs
(r,,r2) such that r, has no fewer points than r,.

Now in order to obtain 2 natural first-order weakening of axioms
1-7, it is uscful to notice that axiom 7 could be replaced by an induction
schema that drops ‘3y;,’ but uscs instead a second-order quantificr:

7" VP[3xPx— Ix(Px A Yw(w < x— —Pw}))].

7', like 7, implies 7, [for an easy application of 7' establishes that
VxV¥y{x € y—x <y), and this establishes that Inf(V) where V is the
region that contains all space~time points]; and of course the equiv-
alence classes in any model of 7* are well-ordered, so axioms 1-6 and
7' have no modcls with non-standard equivalence classes. 7° of course
isn’t first order, nor even nominalistic. (This is an cxample of a sccond-
order quantifier that goes beyond the complete logic of Goodmanian
sums, for the predicate-quantifier ranges over predicates of regions that
aren’t points.) But it is of interest, because it has an obvious first-order
weakening: simply replace the induction axiom 7° by a first-order
induction schema

"

7" Vu,...u,[3xe(xu,,. . ou,) = Ix{elxu,,. . au) A

Yw(w <x— — (p(“',u 1e  olp) }]

This will rule out all models with *discernible’ non-standard equivalence
classes. The theory consisting of axioms 1-6 plus 7” scems to be a very
natural first-order weakening of axioms 1-7.

If we combine 1-6 and 7” with the rest of our theory N*, we obtain
a completely first-order subthcory N of N. In doing this, we arc to
let the axiom schema 7" take as instances any formula in the language
of Ng—that is, it can contain cmpirical vocabulary like ‘Temp-Bet’
aswell as ‘<’ and *<’. Also, we are to expand the instances of schema
(13) to include formulas containing ‘<’




e im S SaLp IR

-—

p. A

104 SCIENCE WITHOUT NUMBERS

I

Ny is a rather natural first-order subthcory of N to look at, in that it
results from something equivalent to N simply by replacing two
second-order statements (viz. axiom 7 and the sccond-order strength-
ening of (13)) by schemas. This system, then, is related to the second-
order theory N in very much the way that first-order set theory is
related to second-order set theory: there too, we get the first-order
weakening of the theory simply by taking a second-order axiom (in
this case the replacement axiom) and making a first-order schema out
of it. This analogy might Jcad us to suspect that just as N has all the
nominalistic consequences that platonistic formulations of Newtonian
gravitation theory have in the context of second-order st theory, so
too Ny will have all the nominalistic consequences that platonistic
formulations of Newtonian gravitation theory have in the context of
first-order sct theory.

It would be nicc if this guess were correct, but I don’t think that it
can be. For somcthing analogous to first-order number theory appears
to be imbeddable in the system N, (using the points in an arbitrary

infinite equally spaced region with one endpoint, instcad of the.

natural numbers). Conscquently, Ny ought to have a Gédel sentence
expressible but not provable in it; and this Gédel sentence ought to be
provable in the system Py of first-order platonistic gravitational
theory.” If this argument-sketch is correct then there will be some
very recherché consequences of Py that are expressible but not provable
in Ny, Sull, I suspect that the extra strength that Py has over N is
confined to such recherché consequences; Ny is T suspect sufficient for
all nominalistic conscquences we would normally be interested in
deducing from Py, and more than sufficient for developing the usual
theory of gravitation. Compare Pcano arithmetic, the first-order
theory that results from full sccond-order arithmetic by replacing the
sccond-order induction axiom by a first-order schema: although
second-order arithmetic has all the arithmetic conscquences that
arithmetic in the context of sccond-order sct theory has, Peano
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arithmetic is weaker than arithmetic in the context of first-order set
theory. Still, Peano arithmetic is strong cnough for any ordinary
arithmetical consequences. 1 would suspect that something analogous
is true for Ng: that it is morc than strong enough for any ordinary
developments in the usual theory of gravitation. However, this is not
a matter I have investigated very far, and 1 will leave it to others more
adept at these matters than 1 to confirm or refute my suspicion.
(AsT've mentioned, if the suspicion turns out to be falsc, I would look
for a natural first-order strengthening of Ni,.)

A platonist might argue that even if I am right about the strength of
N, nominalism is still in trouble: for since N is weaker in nominalistic
consequences than the first-order platenistic theory Py, then it doesn’t
have all the nominalistic conscquences that we ought to want, That is,
we ought to want all the nominalistic conscquences of P, even the
very recherché ones that no onc is interested in in practice, like the
Godel sentence of Ny. There is a certain plausibility to this argument
for the inadequacy of Ny; but it doesn’t scem to me that it can be used
to support the platonistic theory Py, it can only be used to support a
second-order theory like N. For P too (assuming that it is formulated
in a recursively axiomatized system like Zermelo-Frankel set theory,
or at least a recursively-cnumcrably-axiomatized system) has a Godel
sentence which is intuitively true, and by adding that sentence to P
we will get recherché conscquences not obtainable from Py alone;
these recherché consequences scem just as intuitively desirable as the
Godel sentence of Ng. And the same point holds not only for Py but
for any expansion of Py with a recursively-cnumerable set of axioms.
The point i< that a price of rewricting oneself to first-crder logic
(and torecursively or recursively-enumerably axiomatized theories; but
there scems to be little point in a restriction to first-order logic if one
is going to allow the use of theories with no recursively cnumerable
axiomatization) is that one has to scttlc for a rather arbitrarily restricted
theory: that is, for any first-order theory one scttles for, there is a
better one, onc that scems intuitively to be truc if the original onc is,
and is morc powerful. This holds whether the first-order theory onc
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settles for is a nominalistic one like N, or a platonistic one like Py;
hence it can’t be used as an argument for the inadequacy of N unless
platonistic first-order theories are also admitted to be inadequate,
Consequently, if onc is committed to first-order theories, then the
only obvious way to decide if one is good enough is to decide whether
it is powerful enough to get the results that are seriously needed in
practice, i.e. excluding recherché results like those obtained by
Godelization. As I've said, I think it highly likely that N or some
slightly stronger first-order subtheory of N passes this test.

The argument at the beginning of the previous paragraph, then,
may indicate an inadequacy in Ng; but if so, it is an inadequacy in P,
as well, and hence it is not an argument for platonism. If you want to
cure this ‘inadcquacy’, the only recourse:is to go to a second-order
theory—either N, or platonistic gravitational theory in the context of
second-order sct theory. But since as we've seen N has all the nominal-
istic consequences that sccond-order platonistic set theory has, it is
hard to sce in the context of second-order logic what the advantages
of platonism can be. Either way, then, it Jooks as if nominalism
triumphs,

Notes

Preliminary Remarks.

1. The ‘part of mathematics that docsn’t contain references to abstract
entities’ is really just applied logic: it is the systematic deduction of
conscquences from axiom systems (axiom systems similar in many
respects to those used in platonistic mathematics, but containing
references only to physical entities). Very little of ordinary mathematics
consists mercly of the systematic deduction of consequences from
such axiom systems: my claim however is that ordinary mathematics
can be replaced in application by a new mathematics which does
consist only of this.

2. 1 believe the approach is gencralizable to curved space-time, but
haven’t thought through all the details.

3. As it happens, a certain reduction of structural assumptions will fall
out ‘by accident’, on one of the two nominalistic formulations of
gravitational theory I will give (the one I will call Ny in Chapter 9).
Moreover, both nominalistic formulations, but especially N, scem
especially well suited for a study of the effects of further weakenings of
the structural assumptions.

4. The most thorough presentation of the Quincan argument is
actually not by Quine but by Hilary Putnam: cf. The Philosophy of
Logic (New York: Harper, 1971), especially Chapters V-VIIL.

Somc of the arguments I do not take seriously (e.g. the argument that
we need to postulate mathematical entities in order to account for
mathcmatical intuitions) arc well treated in Chapter 2 of Chihara,
Ountology and the Vicious Circle Principle (Ithaca: Cornell University
Press, 1973).

5. Actually, I do not think that a platonistic proof of the adequacy of

our theorics serves merely as a reductio: 1 think that a nominalist too

should be convinced by a platonistic proof about the deductive powers
107
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of a given nominalistic thcory. But a defense of this cliim would be
a long story. (Some much too brief remarks on this matter are con-
tained in note 10 in the next chapter.) In any case, the nominalist need
not ultimatcly rely on such platonistic proofs of the adequacy of his
systems: in principle at least, he and his fellow nominalists could
simply spin out deductions from nominalistic axiom systems like the
ones suggested later in the monograph. In this sense, the reliance on
platonistic proofs could be regarded as a temporary expedicent.

CHAPTER 1
Why the Utility of Mathematical Entities is Unlike the Utility of
Theoretical Entities

6. Count ‘=" as logical.

7. That is, replace every quantification of form ‘Vx; (...)" by ‘Vx,

(if not M(x;) then . . .)’, and every quantification of form ‘3x; (.. .)' by

‘Ix; (not M(x;) and .. .)".

8. The formal content of saying that N is ‘nominalistically statable’ is
simply that it not overlap in non-logical vocabulary with the math-
ematical theory to be introduced. (Recall that *=" counts as logical.)
This is all we nced to build into ‘nominalistically statable” in order for
Principle C to be true. For Principle C to be of interest, we must suppose
in addition that the intended ontology of N doces not include any
entities in the intended extension of the predicate ‘M’ of S; for if this
condition were violated, then N* + S would not correspond to the
‘intended’ way of combining N and S.

9. Proof: Suppose N* + S + {3\ - M(x)} implics A*, Then N* +S
implics A* v ¥x{—M{x}- x # x); that is, it implics B* where B is
A v Vx(x # x). Applying Prmczplc C', we get that N* implics B*,
and conscquently that N* 4 {3x — M(x)} implics A*. From this it
clearly follows that N implies A.

Principle C doces not quite follow from Principle C, for a theory S
could imply that there arc non-mathematical objects but not imply
anything elsc about the non-mathematical realm (in particular, not
imply that there arc at least two mathematical objects—the latter
would violate Principle C as well as Principle C').
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s0. In what sense does he know this? At the very least, he knows it in
the sense that a platonist mathematician who proves a result in recursive
function theory by means of Church’s thesis knows that he could
construct a proof that didn’t invoke Church’s thesis. The platonist
mathematician hasn’t proved using the basic forms of argument that
he accepts that such a proof is possible, for he hasn’t proved Church's
thesis. (Nor can he even state Church’s thesis except by vague terms
like ‘intuitively computable’) Still, there is a perfectly good sense in
which our platonist mathematician does know that a proof without
Church’s thesis is possible—after all, he could probably come up with
Turing machine programs at each point where Church’s thesis was
invoked, if given sufficient incentive to do so. In precisely the same
sense, the nominalist knows that for any platonist proof of a
nominalistically-stated  conclusion  from  nominalistically-statcd
premises there is a nominalistic proof of the same thing.

Just-what this scnsc of ‘know’ is (or, just what kind of knowledge is
involved) is a difficult matter: it doesn’t scem to me quite right to call
it ‘inductive’ knowledge. But however this may be, it is a kind of
knowledge (or justification) whose strength can be increased by
inductive considerations: in the recursive function casc, by knowledge
that in the past onc had been able to transform proofs involving the
imprecise notion of ‘intuitively computable’ to proofs not involving
it when one has tried {or by knowledge that others have been able to
cffcet such transformations, and that onc’s own judgements of intuitive
computability tend to coincide with theirs). In the conservativeness case,
the kind of inductive considerations that arc relevant are the knowledge
that in the past no one has found counter examples to conservativeness,
and also the knowledge that in many actual cases where platonistic
devices are used in proofs of nominalistic conclusions from nominal-
istic premises (such as the cases discussed in Chapters 2 and 3), these
devices are eliminable in what seems to be a morc or less systematic way.

These remarks suggest that the nominalistic position concerning
the use of platonistic proofs is about comparable to the platonist's
position concerning proofs that use Church’s thesis. Actually T think
that the nominalist’s position is in one respect cven better, for he can
rely on something that the platonistic recursion theorist has no analog
of: viz., the mathematical arguments for conscrvativeness given in
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the Appendix. Of course, these arguments don't raise the claim that
mathematics is conscrvative to complete certainty, for two reasons,
One reason is that somcthing at lcast as strong as the consistency of set
theory is assumed in them, and no one (platonist or nominalist) can be
completcly surc of that. The other reason is that these proofs (at least the
first, and both if onc is sufficicntly strict about what counts as nominalist)
are platonistic, and so some story has to be told about how the nominal-
ist is justified in appcaling to them outside the context of a reductio,
I think some such story can be told, but it would be a long one.
(An essential idea of the story would be that we use conservativeness
to argue for conscrvativeness: we’'ve seen that the nominalist has
various initial quasi-inductive arguments which support the con-
clusion that it is safe to use mathematics in certain contexts; if he then
using mathematics in one of those contexts can prove that it is safe to use
mathematics in those contexts, this can raise the support of the initial
conclusion quite substantially.)

A platonist might be inclined to dismiss the sort of quasi-inductive
knowledge discussed in this note. But to do so would be to pay a high
price: most of mathematics is known only in this quasi-inductive sort
of way. For most of it is proved by rather informal proofs; and though
we all do in an important sense kuow that we could reconstruct such
proofs formally if forced to do so, still the principle that formal proofs
are always possible when we have an intuitively acceptable proof is,
like Church’s thesis, a principle that we haven't proved and have no
prospect of proving.

11. We will see, however, that the wtility of number theory is less
subject to such empirical vicissitudes than are theories about say the
real numbers.

12, D should cither be taken to consist cntircly of non-scts, in which
case ¢ should be taken to be the empty sct (or another non-set); or D
should be taken to consist entircly of sets of the same rank and ¢ should
be another set of that rank. Given any model of a theory, there is no
difficulty in getting another model whose domain mects these
conditions.

13. Suppose S+ T* is inconsistent; the Robinson thcorem says that
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there is a sentence B in the language common to S and T* such that
S— Band T*~ —B. Clearly if S and T arc both consistent, then
B can’t be cither a logical truth or a contradiction. The language
common to S and T* consists, in the case of a ‘purc’ mathematical
theory, of ‘M’ (the predicate ‘mathematical’ discusscd prior to the
formulation of Principle C) and !=’, and nothing clse. The only
statements in this language other than logical truths or contradictions
are statements saying how many mathematical objects there are andfor
how many non-mathematical ohjccts there are. But since all statements
in T* are explicitly restricted to non-mathematical objects, T* can't
imply anything about how many mathematical objects there are, and
since the mathematical theory is assumed to be a pure onc it can't
imply anything about how many non-mathematical objects there are.
So there can be no such Bj; that is, the supposition that S and T arc
consistent but S 4 T* is inconsistent has been reduced to absurdity.

14. A sketch of the proof of the last fact is given in Thomas Jech,
The Axiom of Choice, p. 51, problem 1. Using this fact, the proof that
conscrvativeness implics consistency is just as in note 13.

15. Proof: if ZF is consistent, and ZF~ ‘T is consistent’ (where
‘T is consistent” abbreviates the formalization in ZF of the claim that T
is syntactically consistent) then ZF+ ‘T is consistent’ is certainly
consistent. Since the Gédel completeness theorem (together with
various more elementary facts) is provable in ZF, then so is ZF + ‘there
is a model of T in which all clements of the domain have the same
rank and such that there is a sct of that rank that is not in the domain’.
(Cf. note 12 for the motivation of this.) If T has n primitive predicates,
then a model of T consists of a domain together with n items cach
corresponding o one of the terms. Introducing new names b, ¢,
.« €4 for these things, and a name d for the sct of the right rank that
isn't in the domain of the model, we sce that ZF 4 (b, ¢,,. . .,c,) is
a model of T’ + ‘all members of b have the same rank’ + ‘d has the
same rank as all members of b’ is also consistent. Call this theory ZF;.

By the principle of transfinite recursion, there is a formula 2(x)
(in the language of ZF;) such that

ZF; (in fact, ZF)~ 2(x)erxebv x=d v (x # & A Vy(yex—
2(y)-
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If we translate statements of ZFUyy,+ T* into ZF; by using 2(x)
to restrict all variables, and translating ‘Set(x)’ as ‘x¢b’, ‘e’ as ‘¢,
‘D’ as ‘d', and ‘A(xy,...%,) where A is the ith predicate of T as
(xy4,. . XY € ¢, then each of the translations of the axioms of
ZFUyry+ T* is a theorem of ZFy. Since ZF; is consistent {on the
assumption that ZF is}, 50 is ZFUyy, + T*.

16. To sce this, obscrve first that the preceding note proved a slightly
stronger result than was claimed: it proved that if ZF + ‘T is consistent’
is consistent, then ZFUyp, + T* is consistent. So we now need only
show that if’ ZF is w-consistent and T is consistent and recursively
enumerable, then ZF + “T is consistent’ is consistent.

The reason for this is simple: if T is consistent, then nothing is a
proof from T of ‘o= 1°; and if T is also recursively enumerable, ZF is
strong enough to prove “(k}is not the Gédel number of a proof from
T of ‘o=1"", for cach numeral k. By the w-consistency of ZF it
follows that one cannot prove in ZF anything of the form ‘Ix(x is
the Gédel number of a proof from T of ‘0= 1")’; so onc can’t prove
‘T is not consistent’ from ZF, and so ZF + *T is consistent” is consistent.

CHAPTER 2
First Hllustration of Why Mathematical Entities are Uscful:
Arithmetic

17. To simplify things I haven’t shifted from N to N* in this case,
because in this example such a shift isn't needed. If we did shift from
N to N*, we would rewrite 1 as

1* There arc exactly twenty-onc aardvarks that arc not math-
ematical objects.

and take as an abstract counterpart of 1* the claim

(1*) The cardinality of the sct of aardvarks that arc not math-
ematical objects is 21.

18. Hilary Putham gives a similar illustration, in ‘The thesis that
mathematics is logic’ in Philosophical Papers, Vol. 1 (Cambridge:
Cambridgc University Press, 1975): cf. pp. 26-33, and in particular
PP- 31-3, where Putnam points out that the application of number
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theory requires only the consistency of mathematics. I was in fact
originally led to the view that I take in this mor:ograph largely by
thinking about these striking remarks of Putnam’s. Note, however,
that the conclusion that Putmam draws from his remarks is rather
diffcrent from the one 1 draw: his conclusion is that we should interpret
purc mathematics as asserting the possible existence of physical struc-
tures satisfying the mathematical axioms, whereas my conclusion is
that we don’t need to interpret pure mathematics at all.

In another paper in the same volume, “What is mathematical truth?’,
Putnam takes back the view put forth in the carlier paper, claiming in
effect that the account given of the application of number theory
couldn’t possibly be extended to an account of how the theory of
functions of real variables i< applied to physical magnitudes. (Cf.
pp- 74-5. Putnam has presented this point at grcatcrvlcfxgth. in The
Philosophy of Logic (sec note 4).) Perhaps in part his pessimism is due to -
the assumption that any extension of the account of how number
theory is applied would have to be put into the framework of 2
reinterpretation of mathematics; in any casc, the later chapters of this
monograph (starting with Chapter 3) show how to perform the
extension in question, if we forget about reinterpreting pure math-
ematics and worry only about rcinterpreting its applications.

CHAPTER 3
Sccond Hlustration of Why Mathematical Entities are Useful:
Geometry and Distance

19. David Hilbert, Foundations of Geometry (LaSalle, IIl: Open Court,
1971).

CHAPTER 4
Nontinalism and the Structure of Physical Space

. . L
20. For the reader who wonders why 1 say ‘space-time point’ instead
of *point of space’: your curiosity will be alleviated in the last paragraph
of Scction 1 of this chapter,

21. 'In a suitably generalizable way’ means ‘in a way generalizable to
. . . .
products of spatio-temporal intervals with scalar intervals’. The
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suitably generalized way of making product comparisons is given in
Chapter 8. '

22. Or anyway, it is illegitimate to quantify over unoccupied points
am.i regions: quantification over occupied points or regions (i.c.
points or regions wholly occupied by parts of physical objects) could
be regarded as equivalent to quantifying over the objects which
occupy them, and hence as unproblematic to the relationalist.

23. Note incidentally that according to theories that take the notion
of a field scriously, space-time points or regions arc full-fledged
causal agents. In electromagnetic theory for instance, the behavior of
matter is causally explained by the electromagnetic field values at
unoccupied regions of space-time; and since, platonistically speaking, a
field is simply an assignment of properties to points or regions ’of
space-time, this means that the behavior of matter is causally explained
by t.hc electromagnetic properties of unoccupicd regions. So ac-
cording to such theories space-time points arc causal agents in the
same scnsc that physical objects are: an alteration of their properties
leads to different causal consequences.,

24: Earman, Australasian Journal of Philosophy, 48, 287-319 (1970);
Friedman (Princeton University Press, forthcoming).

25. Nclson Goodman, Problems and Projects (Indianapolis: Bobbs-
Merill, 1972), Part IV.

26. As the reference to Goodman indicates, 1 use ‘region’ in such a
way that there is no cmpty region, i.c. no region containing no space-
time points. Also regions don’t need to be connceted, or measurable, or
anything likc that: very ‘unnatural’ collections of points count as rcgi(;ns.

27. This is not to deny that there might be difficultics in figuring out
how to axiomatizc the ‘regular’ regions without assuming tl;c c.\:is;ence
of the ‘irregular’ ones. How difficult this task would be presumably
depends on the concept of regularity involved.

28. Sec Ric]‘mrd Montaguc, ‘Set theory and higher order logic’, in
Crossley and Dummett (Eds), Formal Systems and Recursive Functions
(Amsterdam: North-Holland, 1965), pp. 131-48, for the sort of
second-order axiomatization I have in mind, and a defense of the idea
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that not only in sct theory but clsewhere as well, the way to explicate
the idea of a standard modcl of a first-order theory is as ‘model of an
associated second-order theory’. As Montague points out, the models of
Zermelo-Fracnkel sct theory that are ‘standard’ on this explication are
preciscly those models that are isomorphic to models in which the
domain is the set of all scts of rank less than a for some strongly
inaccessible o (greater than w), and in which ‘€’ is assigned the member-
ship rclation restricted to this domain. 1 agree with Montague that
this is thc most natural notion of a standard model for sct theory.

29. “What is clementary geometry?’, in Hintikka (ed.), The Philosophy
of Mathematics (London: Oxford University Press, 1969), pp. 164-75.

30. In more detail: recall that conservativeness as I defined it initially
is a semantic notion, onc involving consequence rather than provability.
In the Appendix to Chapter 1, I reformulated it in terms of con-
sistency; this is ambiguous between the semantic and the syntactic,
but in referring to some of the arguments as proof-theoretic, and in
the way I wrote the proof in note 15, 1 showed that it was the syntactic
notion I was dcaling with. The justification for the shift from scmantic
to syntactic notions is of coursc the Gédel completeness theorem for
first-order logic. In the case of sccond-order logic there can be no
such completeness theorem: here, we must stick to semantic notions
throughout. But the key results of the Appendix remain unchanged.
In particular, if ‘consistent’ in (Co) is understood as ‘semantically
consistent’, the set-theoretic proof of (C,) is as before: the method
described for turning a model of T into a model of ZFUyqy + T* can
remain unchanged as long as both ZFU and T are second-order
theories. (Recall the remarks in note 28 on what the models of sccond-
order sct theory are like.) Analogously, the proof in note 15 that (C,)
follows from the consistency of ZF needs no alteration when T and
ZF arc made sccond order, except that since we're replacing syntactic
consistency by semantic consistency, the step involving the Gédel
completencss theorem is unnccessary. (Two less central results of the
Appendix are more problematic: the proofs via the Robinson theorem
(which is not valid in sccond-order logic) and Weinstcin's proof that
the w-~consistency of ZF suffices for (C,). But these results arc not re-
quired for the remarks in the text to be truc.)
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CHAPTER 6
A Nominalistic Treatment of Newtonian Space-Time

31. ‘Metamathematical propertics of some affine geometries’, in
Bar-Hillel (Ed.), Logic, Methodology, and Philosophy of Science
(Amsterdam: North Holland, 1965), pp. 166-78.

32. Of course, (d) and (c) will be included in the covariance group of
Newtonian mechanics on a tensor formulation, but that is irrelevant:
so will lots of transformations that arc clearly not symmertries, i.e.
under which the laws in their usual formulations are not invariant.
(For a good discussion of the conceptual distinction between symmetry
and covariance, scc Fricdman, Foundations of Space-Time Theories,
Chapter 111). The rcason why tensor approaches leave (d) and (¢) out
of the class of symmctries is that despite the fact that the main motivation
of the tensor approach is to climinate the usc of arbitrarily chosen co-
ordinate systems in formulating the laws of physics, it does not
eliminate the usc of arbitrarily chosen units of distance (or of arbitrarily

chosen units for scalar magnitudes gencrally).

33. In particular, the axiom system I am referring to is a sccond-order
axiom system, but is interpretable nominalistically for the same
reason that Hilbert’s was: cf. Chapter 4. (Szczerba and Tarski also
give a weaker first-order axiom system, but I am confining my
attention here to the sccond-order system for the reason stated near
the end of Chapter 4.)

34. Those used to tensor formulations might find the appearance of a
distance function in the context of affine space puzzling; after all,
there is no uniquely defined metric in such a spacc! But as I remarked
on the previous page, there is no uniquely defined mctric in Euclidean
geometry either, on an approach which (unlike the tensor approach) is
fully invariant. Even though there is no uniquely defined metric in
cither affinc or Euclidean gecometry, it is legitimatc to invoke a distance
function in the representation theorem: for the representation theorem
is simply a device for invoking mathematics extrinsically, to simplify
calculations; and the distance function invoked in it is not invoked in
the nominalistic theory that serves as our intrinsic cxplanation. (The
right-hand side of the representation theorem for ‘Bet’ could also be
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formulated without invoking a distance function, but the formulation
in terms of distance is easier to state.)

35. The preceding is a very redundant way to cstablish this: all we
really nced to check is that betweenness (which requires collincarity)
is preserved by generalized Galilean transformations. But the re-
dundancy is uscful for giving an intuitive feeling for the significance
of the 4-dimensional geometric claims.

36. 1 have not introduced a temporal congruence predicate, because it
is definable from betweenness and simultaneity. (The kind of spatial
congrucence relation considered here would also be definable from
berweenness alonc, if there were only one spatial dimension.) A good
way to arrive at onc’s choice of primitives is to look for a sct of prim-
itives whose coordinate representations form a complete set of in-
variants for the class of generalized Galilcan transformations: that is
(a) cach primitive must have a coordinate representation which is in-
variant under these transformations; and (b) for cach transformation
that isn’t a gencralized Galilean transformation, the coordinate
representation of at Jeast one of the primitives must fail to be invariant
under that transformation. If these conditions were not met, the
uniqueness theorem couldn’t possibly hold.
For later reference 1 will give some definitions:

() Coll (x,y,z), meaning intuitively that x, y, and z lic on a line,
is defined by
y Bet xz v x Bet yz v z Bet xy.
(b) Coll (x,y,z,w) is defined as
Coll (x,y,2) A Coll (x,y,w) A Coll (x,2,w) A Coll (y,z,w).
(c) Coplan (x,y,z,w), meaning intuitively that x, y, z, and w lic on
a plane, is defined as
Ju{[Coll (u,x,y) A Coll (u,z,w)] v [Coll {u,x,2)
A Coll (n,y,w)] v [Coll (u,x,w) A Coll (u,y,2)]}.
(d) Cohyp (x,y.z,v,w), meaning intuitively that x, v, z, v, and w
lic on a 3-dimensional hyper-plane, is defined as
Au{[Coplan (u,x,y,z) A Coll (u,v,w})] v [Coplan (u,x,y,v)
A Coll (u,z,w)] v [Coplan (u,x,y,w) A Coll {u,z,v)]}.
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(¢) xy Parzw, mcaning intuitively that X # y and z # w and the
line passing through x and y is parallel to (or identical to) the line
passing through z and w, is defined to be Coplan (x,y,z,w) A
—Ju[Coll (x,y,u) A Coll (z,w,u)).

(f) Parallelogram (x,y,2,w), meaning intuitively that x, y, z, and
w are vertices of a parallelogram with x opposite z, is defined
as Xy Par zw A xw Par yz, -

(8) xy P-Cong zw, meaning intuitively that x and y are on a line
parallel to a line through z and w and the distance from x to yis
equal to that from z to w, is defined as (x = yAaz=w)v Juv
[Parallelogram (x,y,u,v) A (Parallclogram (z,w,u,v) v Parallclo-
gram (z, w, v, u))].

’;‘hcsc are all affinc-invariant notions, since they’re defined from
ctw e .

cenness alone. Now using simultancity as well, we can define
temporal congruence:

(h) xy t-Cong zw is defined as

’ LA 4 . .
3%,y 2, w'[x Simul x’ A y Simul ¥ Az Simul 2’ A
w Simul w’ A x'y’ P-Cong z'w].
37. The simultancity axioms are:

(@) 3Jab,cd[aSimulbab SimulcacSimulda
~ Coplan (a,b,c,d)).

(b) Vab,c,d[a Simul b A b Simul ¢ A ¢ Simul d A
— Coplan (a,b,c,d) - ¥x,y[x Simul yesx = yv
Je(e # a A xy Par ac A Cohyp (a,b,c.de)]).

(Cf“. notc 36 for the definitions of ‘Coplan’ and ‘Cohyp’). To axiomatize
S-Congruence, start with the usual congrucnce axioms that when added
to.thc a?:ioms of 3-dimensional affinc geometry give you a complete
axiomatization of 3-dimensional Euclidean geometry, and in cach of
these axioms restrict all variables so that all poin;s mcntioned are
required to be simultancous with cach other. These axioms, plus also

(3) xy S-Cong zw— x Simul ¥ Az Simul w
(b) xy S-Cong zw«s 3z, w'(xy S-Cong z'w’ A x Simul 2’ A
z'w’ P-Cong zw),
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where P-congruence is as defined in note 36, suffice for the desired
representation and uniquencss theorems. Doubtless there are more
clegant axiomatizations of 'S-Cong’ than this, but this onc has the
advantage of being obviously adequate,

CHAPTER 7
A Nominalistic Treatment of Quaniitics, and a Preview of a
Nominalistic Treatment of the Laws involving them

38. In Philosophical Papers, Vol. 1 (Cambridge: Cambridge University
Press 1975).

39. New York: Academic Press, 1971.

40. Actually they usc a single primitive, xy < zw, meaning that the ab-
solute valuc of the scalar difference between x and y is less than or
cqual to the absolute value of the scalar difference between z and w. -
But their system is convertible to onc using betweenness and congruence
as primitives; or cquivalently, my remarks could be casily medificd so
as to make usc of their primitive instead of betweenness and congruence.

41. Two modifications of the Krantz axiomatizations are required. In
the first place, the Krantz system yiclds a representation theorem in
which the range of the scalar function is not required to be connected.
But this is casy to fix: add an axiom saying that for any two points
x and z there is a third point y such that y Temp-Bet xz and xy Temp-
Cong yz; and replace the Archimedean axiom by a Dedekind con-
tinuity axiom. Since the Krantz system alrcady contains an axiom that
allows subtraction (i.c. with the consequence that if ry, ry, 15, and 1,
arc in the range of the scalar and |ry —r ) <|r, — 1|, than there is an
r in the range of the scalar between 1y and ry such that Ir; -1l =
ry = 14]). these modifications clearly suffice for the range of the
scalar to be connected.

The sccond modification that is required is duc to the fact that their
system leads to a representation function which is 1-1. However, it is
casy to modify the system so that this is not a consequence: instead
of supposing that x Bet yy and 3z(xy Cong zz) each imply x=y,
require only that x Bet yy« 3z{xy Cong 2z) and that x Bet yy is an
equivalence rclation and that substitivity of cquivalents never affects
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b?tweenness or congruence. This axiomatization (which is actually a
bit redundant) obviously works, for the equivalence classes satisfy
the original axiom system, and a 1-1 representation function whose
domain is the set of equivalence classes induces a not-necessarily 1-x
representation function on the space-time points themselves.

Incidentally, it may alleviate confusion to point out that my style
of stating representation theorems is differcnt from that of Krantz
et al. My represcntation theorems say that a structure (of the appropriate
type) is a model of such and such a theory if and only if there is a
representation function of such and such a sort; theirs say only if rather
than if and only if, and the statements of their thcorems would be false
if you replaced ‘only i’ by ‘if and only if” because of their use of what
fbcy call ‘non-necessary axioms’. The reason I have been able to avoid
non-necessary axioms’, and hence make “if and only if” statements, is
that I have strengthened the system so as to require that the ranges of
scalar functions be connected. One of the virtues of the space-time
approach to these matters is that it allows that.

42. Simply add that Temp-Less is transitive and connected, and that

Y Temp-Bet xze+(x Temp-Less y A y Temp-Less 2) v
(z Temp-Less y A y Temp-Less x).

13- Whether or not we use the sixth predicatc depends on how
invariant the law is taken to be. Physical laws involving the gravi-
tational potential are not in general invariant under reflection, so we
will need to invoke a predicate ‘Grav-Less’ in formulating physics
nominalistically; but in sketching the approach it is better to leave
open the question of whether there is a ‘less than’ primitive, so as to
make the approach also apply to scalar ficlds that cnter only into laws
that are invariant under reversal.

CHAPTLR 8
Newtonian Gravitational Theory Nominalized

44. Temperature-basic scts may be mapped by ¥ onto semi-closed
sets of real numbers, but only if the included end-point is the Jargest
or smallest temperature value attained anywhere throughout the
whole space.
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45. Observe that the basic idca of this approach to continuity is to
use two topologics on the same sct (the sct of space-time points),
rather than topologics on two diffcrent sets that are related by a func-
tion. That is the sccret of how quantifying over functions is avoided.

46. Although in the trcatment of continuity we also avoided Scal-
Cong, it is not in general possible to do much without Scal-Cong.
Scal-Cong, unlike spatial congrucﬁcc, is an affinc notion: that is,
although in two or more dimensions the affine propertics of space
(which include the P-congruence relation of note 36) arc definable in
terms of betweenness, this isn’t true in onc dimension; and in one
dimension there is no distinction between the affine notion of P-
congruence and the most general congruence relation. So for a one
dimensional structure like temperatyre, congruence is an afiine notion,
and there is no way to avoid it in developing calculus.

47. Or on parallel lincs; but for simplicity 1 confine mysclf to intervals
on the same line.

48. We can assume that x,, X, u,, and u, all lic on a single line, and
that x; # Xj, u; # Uy, y; & ¥, and v, a4 vy; for when these con-
Scal Scal
ditions aren’t met, it is clear that bi-conditional (3) holds. Let r, and
r, be dy(x,,x;) and dyu,,u;) respectively, and let r, and 1, be
W(y,) = ¥(y2)| and |¢(v,) — ¥(v,)| respectively. Let R, and Rgcqy be
regions mecting all the conditions in (4) except possibly the last. Let
N, be the number of points in R,, between x; and x,, and definc
N,, N, and N, similarly (using Rg.,, in placc of R, for N, and N,).
Finally, let g1, be the ¢-distance between adjacent points of R,,, and
pt, be the absolute difference between the yp-values of Scal-adjacent

points in Ry, Then

(N, = pg=r,

(N, — )y, =1,

(Nu - l)”é =, < (Nn + I)I‘¢

(N, = g, <1, < (N, + 1)g,
Also N,=N,. Wec nced: (a) that if N, <N,, then r,r, <r,r,; and
conversely (b) that if r,r, <r,7, then for some choice of R,, and R,
mecting the above conditions, N, <N,
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To prove these, note that the indented incqualities together with
N, =N, give

No—1 _nh (N4 D(N+1)

Ny—17rr, (N,-1)(N,~1)

and the left-most incquality here establishes (a). If we write the right-
most inequality as

T, T, < (N" -1 + 2 ( + 2
— I X
LT, N,—1 N,—1 N,—1

and note that when we increase N, by adding more points to R,,, N,
must increasc too to keep N, = N,, we scc that by adding more points
to R, we can get the right-hand side arbitrarily close to (N, — 1)/
(N, —1). So if r,r,/r,r, > 1, then we can sce that for sufficiently fine-
meshed R,, and Rg,y, (N, — 1)/(N, ~ 1) > 1 also; so (b) is established.

49. The generalization of (4) is:

W AWAV AV AW AW, A (X EXAY, #Y3A2, 82,
' Seal | Scal
= 3R, Ry, Rsey [R,, and R, are st-cqually-spaced regions and

Rg i isa ssalar-cqually spaced region: x, and x, arc in R,,, y, and
Y2 arein R, and z, and 2, arc in Rg,,,; there are a, bin R,, such that
u, and u, are st-between a and b, and there arc ¢, d in R, such that
v, and v, are st-between c and d, and there are ¢, fin Rs.,; such that
Wy and w are Scal-between e and f; there are just as many points of
R, between x, and x, as of R}, between v, and v,; there are just as
many points of R,, between y, and ¥2 as of Rg,, between w; and
W3; and there are fewer points of Rg.,, between z, and z, than of
R,, between uy and u,]}.

50. This section should suggest to thosc familiar with tensor
methods something about how the nominalistic ercatment of covector
and cotensor ficlds and their differentiation is going to work (in the
flat affine space-time we've been discussing). In flat space-time a
contra-vector is represented as simply a pair of points, and covector
and cotensor ficlds arc treated by predicates that have slots to be filled
by contra-vectors. In a gencral treatment onc will represent a cotensor
field of rank n by a betweenness predicatc, a congrucnce predicate, and
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perhaps also a ‘“less than or equal to’ predicate (depending on whether
onc needs order or not): these will have 3(2n+ 1), 4(2n+1), and
2(2n + 1) places respectively, where each of the (2n + 1) place units
represent the endpoints of n contravectors plus a point at which the
ficld is being cvaluated. (In dealing with diffcrentiation it wasn't
necessary to usc all of these places, bécause of the fact that the cotensor
resulted from an independently given scalar field.)

In developing gravitational theory nominalistically it is possible to
take as ones primitive a predicate representing the gravitational field
intensity covector, rather than the gravitationa! potential scalar. This is
in fact a more natural approach in some respects, but though it isn’t
ultimately any more complicated than the approach given here, it seemed
to me that the approach given here would be conceptually less demand-
ing as an introduction to the kind of niominalistic methods I'm using.

I belicve that the idcas here are extendible to curved space-time.
One natural approach to doing this would be to take contravectors at
a point as geodesic segments emanating from that point and contained
in a convex normal neighborhood of that point. (See pp. 33-4 of S.W.
Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time
(Cambridge: Cambridge University Press, 1973) for a definition of a
convex normal ncighborhood, and a sketch of a proof that every
point of a manifold lies in such neighborhoods and that within any
such neighborhood there is a natural diffcomorphism between geodesic
segments on the one hand and contravectors characterized in terms of
a tangent space on the other.) Cotcnsors would then be treated by
predicates of contravectors, in the manner of two paragraphs back;
contratensors of rank greater than 1 need not be treated directly, since
the cffect of them can be gotten by ‘index raising” which can be done
by the method of Section I of this chapter. It ought to be possible, by
a parallel transport predicate, to describe space—time curvature and to
develop differential gecometry. It is not however a trivial task to work
out the details of this, for the whole construction would have to be
based on a representation theorem of a more complicated kind than
any I have seen.

51. R is invoked to keep the sccond directional derivatives small
cnough.
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52. Linterpret this and other ratio statements as mercly a convenient ab-
breviation of the corresponding product statement: i.c.

™I R
]
Qe

simply abbreviates
od =fy.

This convention about the meaning of ratio statements cnables us to

avoid boring qualifications about the cases where £= oor d=o.

o : 1
53 For a discussion of log-interval scales and of ‘why density should
be regarded as a log-interval scale rather tha grscale, sce Krantz
et al, Foundations of Measurement (sce note 39), Pp- 10-11, 484-7.

54. On the fuller trcatment we can state and prove that for any
points a and b there are points c, d, ¢, and f such that the ratio of the
mass at a to the mass at b cquals the ratio of the difference in mass
between ¢ and d to the difference in mass between ¢ and f, (Using the
ratio convention of note 52, and also the (obviously truc) assumption
that the mass density is not the same at each point. If for some rcason
onc wants to avoid that assumption, the case of uniform mass density
can be treated as a scparatc case.) The assumption in the text that there
are points at which the mass density is zero is really just a simple way
of getting this rcsult,

55. Point-particles are presumably an idealization, and an idcalization
that gives rise to some difficultics; but the difficultics that arisc arise on
the usual platonistic ficld-theoretic formulations of physics too, and
hence don’t scem specially relevant to the issuc of nominalism.

56. This requires a bit of care because of the fact that the range of the
scalar may be a finite intcrval, but as usual the difficulty is resolved by
cutting the size of the vectors with respect to which the dircctional
derivatives arc taken.

57. Actually, the only use of either particles or the notion of occupation
in the theory is in defining the notion of trajectory. Conscquently, one
could if one liked avoid explicitly introducing particles, and take
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3 . y . . . 9 « e y .
trajectory’ instcad of ‘occupics’ as primitive. I don’t clim any
philosophical significance for this; I note it only because it allows a
slight technical simplification of the discussion in the next chapter.

5& Contravariant vector fields, that is. Covariant vector fields have
in cffcct been deale with carlier: cf. note so.

CHAPTER 9
- Logic and Ontology

59. A truth theory for a language containing ‘3;,,” would of course
have to usc the notion of finiteness. But that is no objection to the
clarity of ‘3y;,’ or the legitimacy of regarding it as logical, any more
than the fact that the clause in a truth theory for the standard existential
quantificr uses the notion of existence shows that that quantifier isn't
clear or isn’t part of logic.

6o. Allied Tarski, ‘On the concept of logical conscquence’, in his
Logic, Semantics, and Metamathematics (Oxford: Clarendon Press, 1956)

Pp- 409-20.

61. I have shifted from ‘there are only finitely many grains of sand’ to
‘there arc infinitely many grains of sand’ simply because the sense in
which the abstract counterpart of the former is ontologically committed
to functions ctc. is less obvious than the sense in which the abstract
counterpart of the latter is (since the abstract counterpart of the former
is a denial of an existence claim about functions). (There is however
still a clear sense in which the abstract counterpart of the former
commits onc to functions ctc.: only in the context of a theory that
asscrted the existence of lots of functions could the claim about the
non-cxistence of a 1-1 function from the set of natural numbers to the
sct of grains of sand scrve as an abstract counterpart of the claim that
there are infinitely many grains of sand.) When I use the quantifier
‘there are only finitely many’ in gravitational theory, it is to assert
finitude, not to assert infinitude.

62. 1 say that an inference is validated by a theory T if the conclusion
of the inference follows from the premises of the inference together
with the premises of T.
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63. The rcason that the translation into first-order sct theory doesn’t
give the full content of the cardinality quantifier is that there are
models of first-order sct theory that aren’t models of sccond-order
set thcory—viz. the non-standard modcls of first order set theory—
and in many of thesc non-standard modcls an infinite set can satisfy
the set-theoretic formula which “says that’ it is finite.

64. The analogy here is not perfect: after all, Einstein was proposing
a revision of geometry in the sense that some of the formerly held
geomctric claims werc to be given up; whercas in the present case we
are not considering a revision of logic in this sense, but merely an
expansion of what counts as logic. Since, however, expansions are
less radical than revisions, it is all the more inappropriate to resist
cxpansions if such expansions will simplify one’s total theory.

Note that I do not claim that Jogic is always to be expanded to keep
down ontology. If the only way to nominalize the Newtonian theory
of gravitation were to introduce a ‘quantificr’ Q such that QxF(x)
meant that there is something which is F and which is part of a universe
that obeys the laws of Newtonian gravitational theory, then I would
certainly conclude that Quine’s argument for platonism was successful.

65. Sec for instance the Montaguc paper mentioned in note 28, and the
last two paragraphs of this chapter.

66. Sce for instance Paul Benacerraf, ‘Mathematical truth’, Journal of
Philosophy, LXX 19 (1973), 661-79; W. D. Hart, Review of Steiner’s
Mathematical Knowledge, Journal of Philosophy, LXXIV 2, (1977) 118-
129, especially 123-7; Michacel Jubicn, ‘Ontology and Mathematical
Truth’, Noils, XI 2 (1977), 133-50. Also, for problems of quitc a
different sort, Jonathan Lear, ‘Scts and Scmantics’, Journal of Philo-
sophy, LXXIV 2, (1977) 86-102; H. Pumam, ‘Modcls and Reality’,
1977 Presidential Address to the Association of Symbolic Logic; and
P. Benacerraf, *What Numbers Could Not Be’, Philosophical Review,
LXXIV (1965), 47-73.

67. This last picce of hyperbole was suggested to me by remarks of
Gceorge Boolos in ‘On second order logic’, Journal of Philosophy,
LXXII 16 (1975), 509-27 and Lesliec Tharp in *Which logic is the
ight logic?’, Synthesc, 31 (1975) 1-21. Both these papers, along with
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Tarski’s *On the concept of logical consequence’ (sce note 59) raisc
important issues about the decision of what to count as logic.

68. Here for simplicity I'm assuming that N has been written so that
particles are not explicitly quantified over in formulating it—or if you
like, particles arc identificd with their trajectories (Cf. note 7).
Obviously this is not essential to the strategy in the text of how second-
order quantifiers are to be climinated, it just makes that strategy a bit
easicr to describe.

69. This is still a subtheory of N deséitc its additional vocabulary ‘g’
becausc the new vocabulary was definable in N using second-order
quantification. The same will go for the predicate ‘<" to be introduced

later.

70. In fact, sincc in Chapter 8 we applicd the cardinality quantifier
only to points in equally spaced regions, we could be satisfied with
axioms that guaranteed that the claim in the text held for any cqually
spaced regions ry and r,. This fact is of relevance in connection with the

next note.

71. Note that no such cquivalence classes could contain any equally
spaced regions if space-time was Archimedean. The Archimedeanness
of space-time was a consequence of the original axiomatization of its
geometry, the axiomatization using the complete logic of Goodmanian
sums; this fact together with the previous note is sufficient to show that
the cardinality quantifiers aren't needed when one has the complete
logic of Goodmanian sums. But now that we've dropped the use of
the logic of Goodmanian sums, there will be non-standard models of
space-time in which it has non-Archimedean structure, so there is no
guarantee that the non-standard equivalence classes can'’t contain
cqually spaced regions in some models.

72. Essentially this obscrvation was madc to me by John Burgess and
Yiannis Moschovakis.
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attitude toward); and absolute
rest

abstract counterpart, 20-21, 22-23,
24-25, 2728, 94, 95

affine geometry and affine transform-
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Ellis, G., note 50

fewer, 93, 95
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Friedman, M., 35, 49; note 32
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tational potential as primitive,
note $O

128

INDEX 129

Hart, W., note 66

Hawking, S., note 0

Hilbert, D., xi-xii, 25-28, 30, 31, 36,
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impredicativity, 44-45, 100

informal proofs, note 10
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63-64, 64-63, 66, 68, 70-71, 79,
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Jech, T., note 14
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Jubien, M., note 66
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Krantz, D., §8; notes 41, $3
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logic, 16, 21-22, 38-39, 92-98, 105-
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Luce, R., 58

Mach, E., 48
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point particles, 85; nofes 55, 57, 68

Principles C, C’, and C”, 12
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Putmam, H., x, 55; notes 4, 18, 66

quasi-inductive knowledge of logical
results, 12-14; note 10
Quine, W., 2, 3, 6; notes 4, 64
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spatial positions, 3, 31-34; note 3
sec also representation theorems
regions, 36-37, 62, 99~100; nofes 26,
27
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abour mathematics, 3-2, 6, 44-
4% note 18
relativity: special theory of, 42, 49,
63-64
general theory of, 64; note so
represcntation theorems, xi, xii, 24,
26-28, 39, 49-53, $6-60, 61, 66,
68, 90; notes 34, 41, 50
Robinson's Theorem, 18; notes 13, 30
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100, 103, 104
second order logic, 38-40, 97, 103,
104-106; notes 28, 30, 67, 71
set theory: full v. restricted, 9-10, 13~
14, 17,18
pure v. impure, 9-10, I3, 17, 19
second order, 38-40, 96, 104, 106;
notes 28, 63
space-time, realist attitude toward,
31-32, 33-35; notes 23, 41
Suppes, P., s8
synthetic approach, 42-46
see also arbitrary choices; intrinsic
facts and explanations; and invari-
ance
Szczerba, L., 49, 531-52, $3; note 33

Tarski, A., 39, 49, 51-52, 53, 95; nofes
33, 60, 67

tensor analysis, 49, 51, 84; notes 32, 34,
50, 58

Tharp, L., note 67

theoretical indispensability, viii, x, 7-
8, 14, 66

truth of mathematics, vii-viii, 45, 7,
14-15, 19, 21, 23, 29, 39-40;
note 66

Tversky, A, §8

uniqueness theorems, xi, xii, 27, 45~
46, 49-53 (esp. s0~51), 56~60, 62;
note 36

urclements, 9

Weinstein, S., ix, 19, note 30
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